mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Merge branch 'main' into update_multiprocess
This commit is contained in:
@ -940,16 +940,22 @@ impl<'a> Map2 for WhereCond<'a> {
|
||||
dev: &CudaDevice,
|
||||
) -> Result<CudaSlice<T>> {
|
||||
let ids_l = &self.1;
|
||||
let ids = match &self.0.slice {
|
||||
CudaStorageSlice::U32(slice) => slice.slice(ids_l.start_offset()..),
|
||||
let (ids, name) = match &self.0.slice {
|
||||
CudaStorageSlice::U8(slice) => {
|
||||
let ptr = *slice.slice(ids_l.start_offset()..).device_ptr();
|
||||
(ptr, "where_u8")
|
||||
}
|
||||
CudaStorageSlice::U32(slice) => {
|
||||
let ptr = *slice.slice(ids_l.start_offset()..).device_ptr();
|
||||
(ptr, "where_u32")
|
||||
}
|
||||
_ => Err(CudaError::UnexpectedDType {
|
||||
msg: "where conditions should be u32",
|
||||
msg: "where conditions should be u8 or u32",
|
||||
expected: DType::U32,
|
||||
got: self.0.dtype(),
|
||||
})
|
||||
.w()?,
|
||||
};
|
||||
let ids = &ids;
|
||||
let shape = ids_l.shape();
|
||||
let dims = shape.dims();
|
||||
let el = shape.elem_count();
|
||||
@ -959,7 +965,7 @@ impl<'a> Map2 for WhereCond<'a> {
|
||||
.w()?;
|
||||
let t = &t.slice(layout_t.start_offset()..);
|
||||
let f = &f.slice(layout_f.start_offset()..);
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>("where"), kernels::TERNARY)?;
|
||||
let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::TERNARY)?;
|
||||
// SAFETY: Set later by running the kernel.
|
||||
let out = unsafe { dev.alloc::<T>(el) }.w()?;
|
||||
let params = (el, dims.len(), &ds, ids, t, f, &out);
|
||||
|
@ -24,7 +24,7 @@ fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
|
||||
|
||||
fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j <= i)))
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), device)?;
|
||||
Ok(mask)
|
||||
|
@ -424,7 +424,7 @@ pub struct Falcon {
|
||||
|
||||
fn make_causal_mask(t: usize) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
|
||||
Ok(mask)
|
||||
|
@ -91,9 +91,8 @@ impl Cache {
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
// TODO: If we support bool or u8 tensors, this would be better.
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
masks.insert(t, mask.clone());
|
||||
|
@ -47,9 +47,8 @@ impl Cache {
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
// TODO: If we support bool or u8 tensors, this would be better.
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
masks.insert(t, mask.clone());
|
||||
|
@ -1,16 +1,130 @@
|
||||
// This should rearch 91.5% accuracy.
|
||||
// This should reach 91.5% accuracy.
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::Result;
|
||||
use candle::{DType, Var, D};
|
||||
use candle_nn::{loss, ops};
|
||||
use candle::{DType, Device, Result, Shape, Tensor, Var, D};
|
||||
use candle_nn::{loss, ops, Linear};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
const IMAGE_DIM: usize = 784;
|
||||
const LABELS: usize = 10;
|
||||
|
||||
pub fn main() -> Result<()> {
|
||||
struct TensorData {
|
||||
tensors: std::collections::HashMap<String, Var>,
|
||||
pub dtype: DType,
|
||||
pub device: Device,
|
||||
}
|
||||
|
||||
// A variant of candle_nn::VarBuilder for initializing variables before training.
|
||||
#[derive(Clone)]
|
||||
struct VarStore {
|
||||
data: Arc<Mutex<TensorData>>,
|
||||
path: Vec<String>,
|
||||
}
|
||||
|
||||
impl VarStore {
|
||||
fn new(dtype: DType, device: Device) -> Self {
|
||||
let data = TensorData {
|
||||
tensors: std::collections::HashMap::new(),
|
||||
dtype,
|
||||
device,
|
||||
};
|
||||
Self {
|
||||
data: Arc::new(Mutex::new(data)),
|
||||
path: vec![],
|
||||
}
|
||||
}
|
||||
|
||||
fn pp(&self, s: &str) -> Self {
|
||||
let mut path = self.path.clone();
|
||||
path.push(s.to_string());
|
||||
Self {
|
||||
data: self.data.clone(),
|
||||
path,
|
||||
}
|
||||
}
|
||||
|
||||
fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let path = if self.path.is_empty() {
|
||||
tensor_name.to_string()
|
||||
} else {
|
||||
[&self.path.join("."), tensor_name].join(".")
|
||||
};
|
||||
let mut tensor_data = self.data.lock().unwrap();
|
||||
if let Some(tensor) = tensor_data.tensors.get(&path) {
|
||||
let tensor_shape = tensor.shape();
|
||||
if &shape != tensor_shape {
|
||||
candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}")
|
||||
}
|
||||
return Ok(tensor.as_tensor().clone());
|
||||
}
|
||||
// TODO: Proper initialization using the `Init` enum.
|
||||
let var = Var::zeros(shape, tensor_data.dtype, &tensor_data.device)?;
|
||||
let tensor = var.as_tensor().clone();
|
||||
tensor_data.tensors.insert(path, var);
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn all_vars(&self) -> Vec<Var> {
|
||||
let tensor_data = self.data.lock().unwrap();
|
||||
#[allow(clippy::map_clone)]
|
||||
tensor_data
|
||||
.tensors
|
||||
.values()
|
||||
.map(|c| c.clone())
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
}
|
||||
|
||||
fn linear(dim1: usize, dim2: usize, vs: VarStore) -> Result<Linear> {
|
||||
let ws = vs.get((dim2, dim1), "weight")?;
|
||||
let bs = vs.get(dim2, "bias")?;
|
||||
Ok(Linear::new(ws, Some(bs)))
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
struct LinearModel {
|
||||
linear: Linear,
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
impl LinearModel {
|
||||
fn new(vs: VarStore) -> Result<Self> {
|
||||
let linear = linear(IMAGE_DIM, LABELS, vs)?;
|
||||
Ok(Self { linear })
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
self.linear.forward(xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
struct Mlp {
|
||||
ln1: Linear,
|
||||
ln2: Linear,
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
impl Mlp {
|
||||
fn new(vs: VarStore) -> Result<Self> {
|
||||
let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
|
||||
let ln2 = linear(100, LABELS, vs.pp("ln2"))?;
|
||||
Ok(Self { ln1, ln2 })
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let xs = self.ln1.forward(xs)?;
|
||||
let xs = xs.relu()?;
|
||||
self.ln2.forward(&xs)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let dev = candle::Device::cuda_if_available(0)?;
|
||||
|
||||
// Load the dataset
|
||||
let m = candle_nn::vision::mnist::load_dir("data")?;
|
||||
println!("train-images: {:?}", m.train_images.shape());
|
||||
println!("train-labels: {:?}", m.train_labels.shape());
|
||||
@ -19,18 +133,23 @@ pub fn main() -> Result<()> {
|
||||
let train_labels = m.train_labels;
|
||||
let train_images = m.train_images;
|
||||
let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
|
||||
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
|
||||
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
|
||||
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);
|
||||
|
||||
let vs = VarStore::new(DType::F32, dev);
|
||||
let model = LinearModel::new(vs.clone())?;
|
||||
// let model = Mlp::new(vs)?;
|
||||
|
||||
let all_vars = vs.all_vars();
|
||||
let all_vars = all_vars.iter().collect::<Vec<_>>();
|
||||
let sgd = candle_nn::SGD::new(&all_vars, 1.0);
|
||||
let test_images = m.test_images;
|
||||
let test_labels = m.test_labels.to_dtype(DType::U32)?;
|
||||
for epoch in 1..200 {
|
||||
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
let logits = model.forward(&train_images)?;
|
||||
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
|
||||
let loss = loss::nll(&log_sm, &train_labels)?;
|
||||
sgd.backward_step(&loss)?;
|
||||
|
||||
let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
|
||||
let test_logits = model.forward(&test_images)?;
|
||||
let sum_ok = test_logits
|
||||
.argmax(D::Minus1)?
|
||||
.eq(&test_labels)?
|
||||
|
@ -1,12 +1,12 @@
|
||||
#include "cuda_utils.cuh"
|
||||
#include<stdint.h>
|
||||
|
||||
#define WHERE_OP(TYPENAME, FN_NAME) \
|
||||
#define WHERE_OP(TYPENAME, ID_TYPENAME, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t numel, \
|
||||
const size_t num_dims, \
|
||||
const size_t *info, \
|
||||
const uint32_t *ids, \
|
||||
const ID_TYPENAME *ids, \
|
||||
const TYPENAME *t, \
|
||||
const TYPENAME *f, \
|
||||
TYPENAME *out \
|
||||
@ -33,14 +33,21 @@ extern "C" __global__ void FN_NAME( \
|
||||
} \
|
||||
|
||||
#if __CUDA_ARCH__ >= 800
|
||||
WHERE_OP(__nv_bfloat16, where_bf16)
|
||||
WHERE_OP(__nv_bfloat16, uint32_t, where_u32_bf16)
|
||||
WHERE_OP(__nv_bfloat16, uint8_t, where_u8_bf16)
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
WHERE_OP(__half, where_f16)
|
||||
WHERE_OP(__half, uint32_t, where_u32_f16)
|
||||
WHERE_OP(__half, uint8_t, where_u8_f16)
|
||||
#endif
|
||||
|
||||
WHERE_OP(float, where_f32)
|
||||
WHERE_OP(double, where_f64)
|
||||
WHERE_OP(uint8_t, where_u8)
|
||||
WHERE_OP(uint32_t, where_u32)
|
||||
WHERE_OP(float, uint32_t, where_u32_f32)
|
||||
WHERE_OP(double, uint32_t, where_u32_f64)
|
||||
WHERE_OP(uint8_t, uint32_t, where_u32_u8)
|
||||
WHERE_OP(uint32_t, uint32_t, where_u32_u32)
|
||||
|
||||
WHERE_OP(float, uint8_t, where_u8_f32)
|
||||
WHERE_OP(double, uint8_t, where_u8_f64)
|
||||
WHERE_OP(uint8_t, uint8_t, where_u8_u8)
|
||||
WHERE_OP(uint8_t, uint32_t, where_u8_u32)
|
||||
|
@ -209,6 +209,7 @@ impl<'a> VarBuilder<'a> {
|
||||
};
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> Result<Tensor> {
|
||||
let data = self.data.as_ref();
|
||||
let s: Shape = s.into();
|
||||
|
@ -47,9 +47,8 @@ impl Cache {
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
// TODO: If we support bool or u8 tensors, this would be better.
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
masks.insert(t, mask.clone());
|
||||
|
Reference in New Issue
Block a user