mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 19:58:35 +00:00
Rename the .r functions to .dims so as to be a bit more explicit. (#220)
This commit is contained in:
@ -1688,7 +1688,7 @@ impl BackendStorage for CpuStorage {
|
||||
|
||||
fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result<Self> {
|
||||
let ids = self.as_slice::<u32>()?;
|
||||
let (vocab_size, hidden_size) = rhs_l.shape().r2()?;
|
||||
let (vocab_size, hidden_size) = rhs_l.shape().dims2()?;
|
||||
Embedding {
|
||||
vocab_size,
|
||||
hidden_size,
|
||||
|
@ -620,7 +620,7 @@ impl<'a> Map1 for Embedding<'a> {
|
||||
let shape = ids_l.shape();
|
||||
let (v_size, h_size) = rhs_l
|
||||
.shape()
|
||||
.r2()
|
||||
.dims2()
|
||||
.map_err(|e| CudaError::WrappedError(Box::new(e)))
|
||||
.w()?;
|
||||
let dims = shape.dims();
|
||||
|
@ -87,6 +87,12 @@ macro_rules! extract_dims {
|
||||
}
|
||||
}
|
||||
}
|
||||
impl crate::Tensor {
|
||||
pub fn $fn_name(&self) -> Result<$out_type> {
|
||||
self.shape().$fn_name()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::convert::TryInto<$out_type> for Shape {
|
||||
type Error = crate::Error;
|
||||
fn try_into(self) -> std::result::Result<$out_type, Self::Error> {
|
||||
@ -328,23 +334,23 @@ impl<D1: Dim, D2: Dim, D3: Dim> Dims for (D1, D2, D3) {
|
||||
}
|
||||
}
|
||||
|
||||
extract_dims!(r0, 0, |_: &Vec<usize>| (), ());
|
||||
extract_dims!(r1, 1, |d: &[usize]| d[0], usize);
|
||||
extract_dims!(r2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
|
||||
extract_dims!(dims0, 0, |_: &Vec<usize>| (), ());
|
||||
extract_dims!(dims1, 1, |d: &[usize]| d[0], usize);
|
||||
extract_dims!(dims2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
|
||||
extract_dims!(
|
||||
r3,
|
||||
dims3,
|
||||
3,
|
||||
|d: &[usize]| (d[0], d[1], d[2]),
|
||||
(usize, usize, usize)
|
||||
);
|
||||
extract_dims!(
|
||||
r4,
|
||||
dims4,
|
||||
4,
|
||||
|d: &[usize]| (d[0], d[1], d[2], d[3]),
|
||||
(usize, usize, usize, usize)
|
||||
);
|
||||
extract_dims!(
|
||||
r5,
|
||||
dims5,
|
||||
5,
|
||||
|d: &[usize]| (d[0], d[1], d[2], d[3], d[4]),
|
||||
(usize, usize, usize, usize, usize)
|
||||
|
@ -772,7 +772,7 @@ impl Tensor {
|
||||
|
||||
/// Applies a 1D convolution over the input tensor.
|
||||
pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result<Self> {
|
||||
let (c_out, c_in_k, k_size) = kernel.shape().r3()?;
|
||||
let (c_out, c_in_k, k_size) = kernel.dims3()?;
|
||||
let (b_size, c_in, l_in) = match *self.dims() {
|
||||
[b_size, c_in, l_in] => (Some(b_size), c_in, l_in),
|
||||
[c_in, l_in] => (None, c_in, l_in),
|
||||
@ -931,8 +931,8 @@ impl Tensor {
|
||||
.bt())?
|
||||
}
|
||||
let ids_shape = ids.shape();
|
||||
let seq_len = ids_shape.r1()?;
|
||||
let (_, hidden_size) = rhs.shape().r2()?;
|
||||
let seq_len = ids_shape.dims1()?;
|
||||
let (_, hidden_size) = rhs.dims2()?;
|
||||
let storage = ids
|
||||
.storage()
|
||||
.embedding(ids.layout(), &rhs.storage(), rhs.layout())?;
|
||||
@ -1013,7 +1013,7 @@ impl Tensor {
|
||||
// The number of element in indexes must match the dimension on which the add is
|
||||
// performed on the source tensor (and the index values from `indexes` are taken from
|
||||
// the target tensor self)
|
||||
mismatch || source_dims[dim] != indexes.shape().r1()?
|
||||
mismatch || source_dims[dim] != indexes.dims1()?
|
||||
};
|
||||
if mismatch {
|
||||
Err(Error::ShapeMismatchBinaryOp {
|
||||
@ -1144,7 +1144,7 @@ impl Tensor {
|
||||
|
||||
/// Returns the data contained in a 2D tensor as a vector of vector of scalar values.
|
||||
pub fn to_vec2<S: crate::WithDType>(&self) -> Result<Vec<Vec<S>>> {
|
||||
let (dim1, dim2) = self.shape().r2()?;
|
||||
let (dim1, dim2) = self.dims2()?;
|
||||
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
|
||||
let data = S::cpu_storage_as_slice(cpu_storage)?;
|
||||
let mut rows = vec![];
|
||||
@ -1164,7 +1164,7 @@ impl Tensor {
|
||||
|
||||
/// Returns the data contained in a 3D tensor.
|
||||
pub fn to_vec3<S: crate::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> {
|
||||
let (dim1, dim2, dim3) = self.shape().r3()?;
|
||||
let (dim1, dim2, dim3) = self.dims3()?;
|
||||
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
|
||||
let data = S::cpu_storage_as_slice(cpu_storage)?;
|
||||
let mut top_rows = vec![];
|
||||
|
Reference in New Issue
Block a user