mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Rename the .r functions to .dims so as to be a bit more explicit. (#220)
This commit is contained in:
@ -772,7 +772,7 @@ impl Tensor {
|
||||
|
||||
/// Applies a 1D convolution over the input tensor.
|
||||
pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result<Self> {
|
||||
let (c_out, c_in_k, k_size) = kernel.shape().r3()?;
|
||||
let (c_out, c_in_k, k_size) = kernel.dims3()?;
|
||||
let (b_size, c_in, l_in) = match *self.dims() {
|
||||
[b_size, c_in, l_in] => (Some(b_size), c_in, l_in),
|
||||
[c_in, l_in] => (None, c_in, l_in),
|
||||
@ -931,8 +931,8 @@ impl Tensor {
|
||||
.bt())?
|
||||
}
|
||||
let ids_shape = ids.shape();
|
||||
let seq_len = ids_shape.r1()?;
|
||||
let (_, hidden_size) = rhs.shape().r2()?;
|
||||
let seq_len = ids_shape.dims1()?;
|
||||
let (_, hidden_size) = rhs.dims2()?;
|
||||
let storage = ids
|
||||
.storage()
|
||||
.embedding(ids.layout(), &rhs.storage(), rhs.layout())?;
|
||||
@ -1013,7 +1013,7 @@ impl Tensor {
|
||||
// The number of element in indexes must match the dimension on which the add is
|
||||
// performed on the source tensor (and the index values from `indexes` are taken from
|
||||
// the target tensor self)
|
||||
mismatch || source_dims[dim] != indexes.shape().r1()?
|
||||
mismatch || source_dims[dim] != indexes.dims1()?
|
||||
};
|
||||
if mismatch {
|
||||
Err(Error::ShapeMismatchBinaryOp {
|
||||
@ -1144,7 +1144,7 @@ impl Tensor {
|
||||
|
||||
/// Returns the data contained in a 2D tensor as a vector of vector of scalar values.
|
||||
pub fn to_vec2<S: crate::WithDType>(&self) -> Result<Vec<Vec<S>>> {
|
||||
let (dim1, dim2) = self.shape().r2()?;
|
||||
let (dim1, dim2) = self.dims2()?;
|
||||
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
|
||||
let data = S::cpu_storage_as_slice(cpu_storage)?;
|
||||
let mut rows = vec![];
|
||||
@ -1164,7 +1164,7 @@ impl Tensor {
|
||||
|
||||
/// Returns the data contained in a 3D tensor.
|
||||
pub fn to_vec3<S: crate::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> {
|
||||
let (dim1, dim2, dim3) = self.shape().r3()?;
|
||||
let (dim1, dim2, dim3) = self.dims3()?;
|
||||
let from_cpu_storage = |cpu_storage: &crate::CpuStorage| {
|
||||
let data = S::cpu_storage_as_slice(cpu_storage)?;
|
||||
let mut top_rows = vec![];
|
||||
|
Reference in New Issue
Block a user