mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
ModernBERT model (#2713)
* layer_norm_no_bias * Modernbert model. * Format + cleanup error. --------- Co-authored-by: laurent <laurent.mazare@gmail.com>
This commit is contained in:
12
candle-examples/examples/modernbert/README.md
Normal file
12
candle-examples/examples/modernbert/README.md
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
# candle-modernbert
|
||||||
|
|
||||||
|
ModernBERT is a bidirectional encoder-only language model. In this example it is used for the fill-mask task:
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cargo run --example modernbert --release -- --model modern-bert-large --prompt 'The capital of France is [MASK].'
|
||||||
|
```
|
||||||
|
```markdown
|
||||||
|
Sentence: 1 : The capital of France is Paris.
|
||||||
|
```
|
180
candle-examples/examples/modernbert/main.rs
Normal file
180
candle-examples/examples/modernbert/main.rs
Normal file
@ -0,0 +1,180 @@
|
|||||||
|
use std::path::PathBuf;
|
||||||
|
|
||||||
|
use anyhow::{Error as E, Result};
|
||||||
|
use candle::{Device, Tensor};
|
||||||
|
use candle_nn::VarBuilder;
|
||||||
|
use candle_transformers::models::modernbert;
|
||||||
|
use clap::{Parser, ValueEnum};
|
||||||
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
|
use tokenizers::{PaddingParams, Tokenizer};
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, ValueEnum)]
|
||||||
|
enum Model {
|
||||||
|
ModernBertBase,
|
||||||
|
ModernBertLarge,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Parser, Debug)]
|
||||||
|
#[command(author, version, about, long_about = None)]
|
||||||
|
struct Args {
|
||||||
|
/// Run on CPU rather than on GPU.
|
||||||
|
#[arg(long)]
|
||||||
|
cpu: bool,
|
||||||
|
|
||||||
|
/// Enable tracing (generates a trace-timestamp.json file).
|
||||||
|
#[arg(long)]
|
||||||
|
tracing: bool,
|
||||||
|
|
||||||
|
#[arg(long)]
|
||||||
|
model_id: Option<String>,
|
||||||
|
|
||||||
|
#[arg(long, default_value = "main")]
|
||||||
|
revision: String,
|
||||||
|
|
||||||
|
#[arg(long, default_value = "modern-bert-base")]
|
||||||
|
model: Model,
|
||||||
|
|
||||||
|
// Path to the tokenizer file.
|
||||||
|
#[arg(long)]
|
||||||
|
tokenizer_file: Option<String>,
|
||||||
|
|
||||||
|
// Path to the weight files.
|
||||||
|
#[arg(long)]
|
||||||
|
weight_files: Option<String>,
|
||||||
|
|
||||||
|
// Path to the config file.
|
||||||
|
#[arg(long)]
|
||||||
|
config_file: Option<String>,
|
||||||
|
|
||||||
|
/// When set, compute embeddings for this prompt.
|
||||||
|
#[arg(long)]
|
||||||
|
prompt: Option<String>,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
let args = Args::parse();
|
||||||
|
let api = Api::new()?;
|
||||||
|
let model_id = match &args.model_id {
|
||||||
|
Some(model_id) => model_id.to_string(),
|
||||||
|
None => match args.model {
|
||||||
|
Model::ModernBertBase => "answerdotai/ModernBERT-base".to_string(),
|
||||||
|
Model::ModernBertLarge => "answerdotai/ModernBERT-large".to_string(),
|
||||||
|
},
|
||||||
|
};
|
||||||
|
let repo = api.repo(Repo::with_revision(
|
||||||
|
model_id,
|
||||||
|
RepoType::Model,
|
||||||
|
args.revision,
|
||||||
|
));
|
||||||
|
|
||||||
|
let tokenizer_filename = match args.tokenizer_file {
|
||||||
|
Some(file) => std::path::PathBuf::from(file),
|
||||||
|
None => repo.get("tokenizer.json")?,
|
||||||
|
};
|
||||||
|
|
||||||
|
let config_filename = match args.config_file {
|
||||||
|
Some(file) => std::path::PathBuf::from(file),
|
||||||
|
None => repo.get("config.json")?,
|
||||||
|
};
|
||||||
|
|
||||||
|
let weights_filename = match args.weight_files {
|
||||||
|
Some(files) => PathBuf::from(files),
|
||||||
|
None => match repo.get("model.safetensors") {
|
||||||
|
Ok(safetensors) => safetensors,
|
||||||
|
Err(_) => match repo.get("pytorch_model.bin") {
|
||||||
|
Ok(pytorch_model) => pytorch_model,
|
||||||
|
Err(e) => {
|
||||||
|
anyhow::bail!("Model weights not found. The weights should either be a `model.safetensors` or `pytorch_model.bin` file. Error: {e}")
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
let config = std::fs::read_to_string(config_filename)?;
|
||||||
|
let config: modernbert::Config = serde_json::from_str(&config)?;
|
||||||
|
let mut tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||||
|
|
||||||
|
let device = candle_examples::device(args.cpu)?;
|
||||||
|
|
||||||
|
let vb = if weights_filename.ends_with("model.safetensors") {
|
||||||
|
unsafe {
|
||||||
|
VarBuilder::from_mmaped_safetensors(&[weights_filename], candle::DType::F32, &device)
|
||||||
|
.unwrap()
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
println!("Loading weights from pytorch_model.bin");
|
||||||
|
VarBuilder::from_pth(&weights_filename, candle::DType::F32, &device).unwrap()
|
||||||
|
};
|
||||||
|
tokenizer
|
||||||
|
.with_padding(Some(PaddingParams {
|
||||||
|
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
||||||
|
pad_id: config.pad_token_id,
|
||||||
|
..Default::default()
|
||||||
|
}))
|
||||||
|
.with_truncation(None)
|
||||||
|
.map_err(E::msg)?;
|
||||||
|
|
||||||
|
let prompt = match &args.prompt {
|
||||||
|
Some(p) => vec![p.as_str()],
|
||||||
|
None => vec![
|
||||||
|
"Hello I'm a [MASK] model.",
|
||||||
|
"I'm a [MASK] boy.",
|
||||||
|
"I'm [MASK] in berlin.",
|
||||||
|
"The capital of France is [MASK].",
|
||||||
|
],
|
||||||
|
};
|
||||||
|
let model = modernbert::ModernBertForMaskedLM::load(vb, &config)?;
|
||||||
|
|
||||||
|
let input_ids = tokenize_batch(&tokenizer, prompt.clone(), &device)?;
|
||||||
|
let attention_mask = get_attention_mask(&tokenizer, prompt.clone(), &device)?;
|
||||||
|
|
||||||
|
let output = model
|
||||||
|
.forward(&input_ids, &attention_mask)?
|
||||||
|
.to_dtype(candle::DType::F32)?;
|
||||||
|
|
||||||
|
let max_outs = output.argmax(2)?;
|
||||||
|
|
||||||
|
let max_out = max_outs.to_vec2::<u32>()?;
|
||||||
|
let max_out_refs: Vec<&[u32]> = max_out.iter().map(|v| v.as_slice()).collect();
|
||||||
|
let decoded = tokenizer.decode_batch(&max_out_refs, true).unwrap();
|
||||||
|
for (i, sentence) in decoded.iter().enumerate() {
|
||||||
|
println!("Sentence: {} : {}", i + 1, sentence);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn tokenize_batch(
|
||||||
|
tokenizer: &Tokenizer,
|
||||||
|
input: Vec<&str>,
|
||||||
|
device: &Device,
|
||||||
|
) -> anyhow::Result<Tensor> {
|
||||||
|
let tokens = tokenizer.encode_batch(input, true).map_err(E::msg)?;
|
||||||
|
|
||||||
|
let token_ids = tokens
|
||||||
|
.iter()
|
||||||
|
.map(|tokens| {
|
||||||
|
let tokens = tokens.get_ids().to_vec();
|
||||||
|
Tensor::new(tokens.as_slice(), device)
|
||||||
|
})
|
||||||
|
.collect::<candle::Result<Vec<_>>>()?;
|
||||||
|
|
||||||
|
Ok(Tensor::stack(&token_ids, 0)?)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get_attention_mask(
|
||||||
|
tokenizer: &Tokenizer,
|
||||||
|
input: Vec<&str>,
|
||||||
|
device: &Device,
|
||||||
|
) -> anyhow::Result<Tensor> {
|
||||||
|
let tokens = tokenizer.encode_batch(input, true).map_err(E::msg)?;
|
||||||
|
|
||||||
|
let attention_mask = tokens
|
||||||
|
.iter()
|
||||||
|
.map(|tokens| {
|
||||||
|
let tokens = tokens.get_attention_mask().to_vec();
|
||||||
|
Tensor::new(tokens.as_slice(), device)
|
||||||
|
})
|
||||||
|
.collect::<candle::Result<Vec<_>>>()?;
|
||||||
|
Ok(Tensor::stack(&attention_mask, 0)?)
|
||||||
|
}
|
@ -155,6 +155,15 @@ pub fn layer_norm<C: Into<LayerNormConfig>>(
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn layer_norm_no_bias(size: usize, eps: f64, vb: crate::VarBuilder) -> Result<LayerNorm> {
|
||||||
|
let config = LayerNormConfig {
|
||||||
|
eps,
|
||||||
|
remove_mean: true,
|
||||||
|
affine: false,
|
||||||
|
};
|
||||||
|
layer_norm(size, config, vb)
|
||||||
|
}
|
||||||
|
|
||||||
/// RmsNorm is a specialized version of the LayerNorm module.
|
/// RmsNorm is a specialized version of the LayerNorm module.
|
||||||
#[derive(Clone, Debug)]
|
#[derive(Clone, Debug)]
|
||||||
pub struct RmsNorm(LayerNorm);
|
pub struct RmsNorm(LayerNorm);
|
||||||
|
@ -46,7 +46,9 @@ pub use embedding::{embedding, Embedding};
|
|||||||
pub use func::{func, func_t, Func, FuncT};
|
pub use func::{func, func_t, Func, FuncT};
|
||||||
pub use group_norm::{group_norm, GroupNorm};
|
pub use group_norm::{group_norm, GroupNorm};
|
||||||
pub use init::Init;
|
pub use init::Init;
|
||||||
pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
|
pub use layer_norm::{
|
||||||
|
layer_norm, layer_norm_no_bias, rms_norm, LayerNorm, LayerNormConfig, RmsNorm,
|
||||||
|
};
|
||||||
pub use linear::{linear, linear_b, linear_no_bias, Linear};
|
pub use linear::{linear, linear_b, linear_no_bias, Linear};
|
||||||
pub use ops::Dropout;
|
pub use ops::Dropout;
|
||||||
pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD};
|
pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD};
|
||||||
|
@ -60,6 +60,7 @@ pub mod mmdit;
|
|||||||
pub mod mobileclip;
|
pub mod mobileclip;
|
||||||
pub mod mobilenetv4;
|
pub mod mobilenetv4;
|
||||||
pub mod mobileone;
|
pub mod mobileone;
|
||||||
|
pub mod modernbert;
|
||||||
pub mod moondream;
|
pub mod moondream;
|
||||||
pub mod mpt;
|
pub mod mpt;
|
||||||
pub mod nvembed_v2;
|
pub mod nvembed_v2;
|
||||||
|
407
candle-transformers/src/models/modernbert.rs
Normal file
407
candle-transformers/src/models/modernbert.rs
Normal file
@ -0,0 +1,407 @@
|
|||||||
|
//! ModernBERT
|
||||||
|
//!
|
||||||
|
//! ModernBERT is a modernized bidirectional encoder-only Transformer model.
|
||||||
|
//! - [Arxiv](https://arxiv.org/abs/2412.13663) "Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference"
|
||||||
|
//! - Upstream [Github repo](https://github.com/AnswerDotAI/ModernBERT).
|
||||||
|
//! - See modernbert in [candle-examples](https://github.com/huggingface/candle/tree/main/candle-examples/) for runnable code
|
||||||
|
//!
|
||||||
|
|
||||||
|
use candle::{DType, Device, Result, Tensor, D};
|
||||||
|
use candle_nn::{
|
||||||
|
embedding, layer_norm_no_bias, linear_no_bias, ops::softmax, Embedding, LayerNorm, Linear,
|
||||||
|
Module, VarBuilder,
|
||||||
|
};
|
||||||
|
use serde::Deserialize;
|
||||||
|
|
||||||
|
use core::f32;
|
||||||
|
use std::sync::Arc;
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, PartialEq, Deserialize)]
|
||||||
|
pub struct Config {
|
||||||
|
pub vocab_size: usize,
|
||||||
|
pub hidden_size: usize,
|
||||||
|
pub num_hidden_layers: usize,
|
||||||
|
pub num_attention_heads: usize,
|
||||||
|
pub intermediate_size: usize,
|
||||||
|
pub max_position_embeddings: usize,
|
||||||
|
pub layer_norm_eps: f64,
|
||||||
|
pub pad_token_id: u32,
|
||||||
|
pub global_attn_every_n_layers: usize,
|
||||||
|
pub global_rope_theta: f64,
|
||||||
|
pub local_attention: usize,
|
||||||
|
pub local_rope_theta: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct RotaryEmbedding {
|
||||||
|
sin: Tensor,
|
||||||
|
cos: Tensor,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RotaryEmbedding {
|
||||||
|
fn new(dtype: DType, config: &Config, rope_theta: f64, dev: &Device) -> Result<Self> {
|
||||||
|
let dim = config.hidden_size / config.num_attention_heads;
|
||||||
|
let inv_freq: Vec<_> = (0..dim)
|
||||||
|
.step_by(2)
|
||||||
|
.map(|i| 1f32 / rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||||
|
.collect();
|
||||||
|
let inv_freq_len = inv_freq.len();
|
||||||
|
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||||
|
let max_seq_len = config.max_position_embeddings;
|
||||||
|
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||||
|
.to_dtype(dtype)?
|
||||||
|
.reshape((max_seq_len, 1))?;
|
||||||
|
let freqs = t.matmul(&inv_freq)?;
|
||||||
|
Ok(Self {
|
||||||
|
sin: freqs.sin()?,
|
||||||
|
cos: freqs.cos()?,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> {
|
||||||
|
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &self.cos, &self.sin)?;
|
||||||
|
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &self.cos, &self.sin)?;
|
||||||
|
Ok((q_embed, k_embed))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
|
struct ModernBertAttention {
|
||||||
|
qkv: Linear,
|
||||||
|
proj: Linear,
|
||||||
|
num_attention_heads: usize,
|
||||||
|
attention_head_size: usize,
|
||||||
|
rotary_emb: Arc<RotaryEmbedding>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertAttention {
|
||||||
|
fn load(vb: VarBuilder, config: &Config, rotary_emb: Arc<RotaryEmbedding>) -> Result<Self> {
|
||||||
|
let num_attention_heads = config.num_attention_heads;
|
||||||
|
let attention_head_size = config.hidden_size / config.num_attention_heads;
|
||||||
|
|
||||||
|
let qkv = linear_no_bias(config.hidden_size, config.hidden_size * 3, vb.pp("Wqkv"))?;
|
||||||
|
let proj = linear_no_bias(config.hidden_size, config.hidden_size, vb.pp("Wo"))?;
|
||||||
|
|
||||||
|
Ok(Self {
|
||||||
|
qkv,
|
||||||
|
proj,
|
||||||
|
num_attention_heads,
|
||||||
|
attention_head_size,
|
||||||
|
rotary_emb,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
|
||||||
|
let xs = hidden_states.clone();
|
||||||
|
let (b, seq_len, d) = xs.dims3()?;
|
||||||
|
let qkv = xs
|
||||||
|
.apply(&self.qkv)?
|
||||||
|
.reshape((
|
||||||
|
b,
|
||||||
|
seq_len,
|
||||||
|
3,
|
||||||
|
self.num_attention_heads,
|
||||||
|
self.attention_head_size,
|
||||||
|
))?
|
||||||
|
.permute((2, 0, 3, 1, 4))?;
|
||||||
|
|
||||||
|
let q = qkv.get(0)?;
|
||||||
|
let k = qkv.get(1)?;
|
||||||
|
let v = qkv.get(2)?;
|
||||||
|
|
||||||
|
let (q, k) = self.rotary_emb.apply_rotary_emb_qkv(&q, &k)?;
|
||||||
|
|
||||||
|
let scale = (self.attention_head_size as f64).powf(-0.5);
|
||||||
|
let q = (q * scale)?;
|
||||||
|
|
||||||
|
let att = q.matmul(&k.transpose(D::Minus2, D::Minus1)?)?;
|
||||||
|
|
||||||
|
let att = att.broadcast_add(attention_mask)?;
|
||||||
|
let att = softmax(&att, D::Minus1)?;
|
||||||
|
|
||||||
|
let xs = att.matmul(&v)?;
|
||||||
|
|
||||||
|
let xs = xs.transpose(1, 2)?.reshape((b, seq_len, d))?;
|
||||||
|
let xs = xs.apply(&self.proj)?;
|
||||||
|
let xs = xs.reshape((b, seq_len, d))?;
|
||||||
|
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBertMLP {
|
||||||
|
wi: Linear,
|
||||||
|
wo: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertMLP {
|
||||||
|
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||||
|
let wi = linear_no_bias(
|
||||||
|
config.hidden_size,
|
||||||
|
config.intermediate_size * 2,
|
||||||
|
vb.pp("Wi"),
|
||||||
|
)?;
|
||||||
|
let wo = linear_no_bias(config.intermediate_size, config.hidden_size, vb.pp("Wo"))?;
|
||||||
|
Ok(Self { wi, wo })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for ModernBertMLP {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let xs = xs.apply(&self.wi)?;
|
||||||
|
let xs = xs.chunk(2, D::Minus1)?;
|
||||||
|
let xs = (&xs[0].gelu_erf()? * &xs[1])?.apply(&self.wo)?; // GeGLU
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBertLayer {
|
||||||
|
attn: ModernBertAttention,
|
||||||
|
mlp: ModernBertMLP,
|
||||||
|
attn_norm: Option<LayerNorm>,
|
||||||
|
mlp_norm: LayerNorm,
|
||||||
|
uses_local_attention: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertLayer {
|
||||||
|
fn load(
|
||||||
|
vb: VarBuilder,
|
||||||
|
config: &Config,
|
||||||
|
rotary_emb: Arc<RotaryEmbedding>,
|
||||||
|
uses_local_attention: bool,
|
||||||
|
) -> Result<Self> {
|
||||||
|
let attn = ModernBertAttention::load(vb.pp("attn"), config, rotary_emb)?;
|
||||||
|
let mlp = ModernBertMLP::load(vb.pp("mlp"), config)?;
|
||||||
|
let attn_norm = layer_norm_no_bias(
|
||||||
|
config.hidden_size,
|
||||||
|
config.layer_norm_eps,
|
||||||
|
vb.pp("attn_norm"),
|
||||||
|
)
|
||||||
|
.ok();
|
||||||
|
let mlp_norm =
|
||||||
|
layer_norm_no_bias(config.hidden_size, config.layer_norm_eps, vb.pp("mlp_norm"))?;
|
||||||
|
Ok(Self {
|
||||||
|
attn,
|
||||||
|
mlp,
|
||||||
|
attn_norm,
|
||||||
|
mlp_norm,
|
||||||
|
uses_local_attention,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(
|
||||||
|
&self,
|
||||||
|
xs: &Tensor,
|
||||||
|
global_attention_mask: &Tensor,
|
||||||
|
local_attention_mask: &Tensor,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let residual = xs.clone();
|
||||||
|
let mut xs = xs.clone();
|
||||||
|
if let Some(norm) = &self.attn_norm {
|
||||||
|
xs = xs.apply(norm)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
let attention_mask = if self.uses_local_attention {
|
||||||
|
&global_attention_mask.broadcast_add(local_attention_mask)?
|
||||||
|
} else {
|
||||||
|
global_attention_mask
|
||||||
|
};
|
||||||
|
let xs = self.attn.forward(&xs, attention_mask)?;
|
||||||
|
let xs = (xs + residual)?;
|
||||||
|
let mlp_out = xs.apply(&self.mlp_norm)?.apply(&self.mlp)?;
|
||||||
|
let xs = (xs + mlp_out)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBertHead {
|
||||||
|
dense: Linear,
|
||||||
|
norm: LayerNorm,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertHead {
|
||||||
|
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||||
|
let dense = linear_no_bias(config.hidden_size, config.hidden_size, vb.pp("dense"))?;
|
||||||
|
let norm = layer_norm_no_bias(config.hidden_size, config.layer_norm_eps, vb.pp("norm"))?;
|
||||||
|
Ok(Self { dense, norm })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for ModernBertHead {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let xs = xs.apply(&self.dense)?.gelu_erf()?.apply(&self.norm)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBertDecoder {
|
||||||
|
decoder: Linear,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertDecoder {
|
||||||
|
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||||
|
// The decoder weights are tied with the embeddings layer weights
|
||||||
|
let decoder_weights = vb.get(
|
||||||
|
(config.vocab_size, config.hidden_size),
|
||||||
|
"model.embeddings.tok_embeddings.weight",
|
||||||
|
)?;
|
||||||
|
let decoder_bias = vb.get(config.vocab_size, "decoder.bias")?;
|
||||||
|
let decoder = Linear::new(decoder_weights, Some(decoder_bias));
|
||||||
|
Ok(Self { decoder })
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for ModernBertDecoder {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let xs = xs.apply(&self.decoder)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Global attention mask calculated from padded token inputs
|
||||||
|
fn prepare_4d_attention_mask(
|
||||||
|
mask: &Tensor,
|
||||||
|
dtype: DType,
|
||||||
|
tgt_len: Option<usize>,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let bsz = mask.dim(0)?;
|
||||||
|
let src_len = mask.dim(1)?;
|
||||||
|
let tgt_len = tgt_len.unwrap_or(src_len);
|
||||||
|
|
||||||
|
let expanded_mask = mask
|
||||||
|
.unsqueeze(1)?
|
||||||
|
.unsqueeze(2)?
|
||||||
|
.expand((bsz, 1, tgt_len, src_len))?
|
||||||
|
.to_dtype(dtype)?;
|
||||||
|
|
||||||
|
let inverted_mask = (1.0 - expanded_mask)?;
|
||||||
|
|
||||||
|
(inverted_mask * f32::MIN as f64)?.to_dtype(dtype)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Attention mask caused by the sliding window
|
||||||
|
fn get_local_attention_mask(
|
||||||
|
seq_len: usize,
|
||||||
|
max_distance: usize,
|
||||||
|
device: &Device,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let mask: Vec<_> = (0..seq_len)
|
||||||
|
.flat_map(|i| {
|
||||||
|
(0..seq_len).map(move |j| {
|
||||||
|
if (j as i32 - i as i32).abs() > max_distance as i32 {
|
||||||
|
f32::NEG_INFINITY
|
||||||
|
} else {
|
||||||
|
0.
|
||||||
|
}
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.collect();
|
||||||
|
Tensor::from_slice(&mask, (seq_len, seq_len), device)
|
||||||
|
}
|
||||||
|
|
||||||
|
// ModernBERT backbone
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBert {
|
||||||
|
word_embeddings: Embedding,
|
||||||
|
norm: LayerNorm,
|
||||||
|
layers: Vec<ModernBertLayer>,
|
||||||
|
final_norm: LayerNorm,
|
||||||
|
head: ModernBertHead,
|
||||||
|
local_attention_size: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBert {
|
||||||
|
fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||||
|
let word_embeddings = embedding(
|
||||||
|
config.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
vb.pp("model.embeddings.tok_embeddings"),
|
||||||
|
)?;
|
||||||
|
let norm = layer_norm_no_bias(
|
||||||
|
config.hidden_size,
|
||||||
|
config.layer_norm_eps,
|
||||||
|
vb.pp("model.embeddings.norm"),
|
||||||
|
)?;
|
||||||
|
let global_rotary_emb = Arc::new(RotaryEmbedding::new(
|
||||||
|
vb.dtype(),
|
||||||
|
config,
|
||||||
|
config.global_rope_theta,
|
||||||
|
vb.device(),
|
||||||
|
)?);
|
||||||
|
let local_rotary_emb = Arc::new(RotaryEmbedding::new(
|
||||||
|
vb.dtype(),
|
||||||
|
config,
|
||||||
|
config.local_rope_theta,
|
||||||
|
vb.device(),
|
||||||
|
)?);
|
||||||
|
|
||||||
|
let mut layers = Vec::with_capacity(config.num_hidden_layers);
|
||||||
|
for layer_id in 0..config.num_hidden_layers {
|
||||||
|
let layer_uses_local_attention = layer_id % config.global_attn_every_n_layers != 0;
|
||||||
|
layers.push(ModernBertLayer::load(
|
||||||
|
vb.pp(format!("model.layers.{layer_id}")),
|
||||||
|
config,
|
||||||
|
if layer_uses_local_attention {
|
||||||
|
local_rotary_emb.clone()
|
||||||
|
} else {
|
||||||
|
global_rotary_emb.clone()
|
||||||
|
},
|
||||||
|
layer_uses_local_attention,
|
||||||
|
)?);
|
||||||
|
}
|
||||||
|
|
||||||
|
let final_norm = layer_norm_no_bias(
|
||||||
|
config.hidden_size,
|
||||||
|
config.layer_norm_eps,
|
||||||
|
vb.pp("model.final_norm"),
|
||||||
|
)?;
|
||||||
|
let head = ModernBertHead::load(vb.pp("head"), config)?;
|
||||||
|
|
||||||
|
Ok(Self {
|
||||||
|
word_embeddings,
|
||||||
|
norm,
|
||||||
|
layers,
|
||||||
|
final_norm,
|
||||||
|
head,
|
||||||
|
local_attention_size: config.local_attention,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(&self, xs: &Tensor, mask: &Tensor) -> Result<Tensor> {
|
||||||
|
let seq_len = xs.shape().dims()[1];
|
||||||
|
let global_attention_mask =
|
||||||
|
prepare_4d_attention_mask(mask, DType::F32, None)?.to_device(xs.device())?;
|
||||||
|
let local_attention_mask =
|
||||||
|
get_local_attention_mask(seq_len, self.local_attention_size / 2, xs.device())?;
|
||||||
|
let mut xs = xs.apply(&self.word_embeddings)?.apply(&self.norm)?;
|
||||||
|
for layer in self.layers.iter() {
|
||||||
|
xs = layer.forward(&xs, &global_attention_mask, &local_attention_mask)?;
|
||||||
|
}
|
||||||
|
let xs = xs.apply(&self.final_norm)?.apply(&self.head)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// ModernBERT for the fill-mask task
|
||||||
|
#[derive(Clone)]
|
||||||
|
pub struct ModernBertForMaskedLM {
|
||||||
|
model: ModernBert,
|
||||||
|
decoder: ModernBertDecoder,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ModernBertForMaskedLM {
|
||||||
|
pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
|
||||||
|
let model = ModernBert::load(vb.clone(), config)?;
|
||||||
|
let decoder = ModernBertDecoder::load(vb.clone(), config)?;
|
||||||
|
Ok(Self { model, decoder })
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn forward(&self, xs: &Tensor, mask: &Tensor) -> Result<Tensor> {
|
||||||
|
let xs = self.model.forward(xs, mask)?.apply(&self.decoder)?;
|
||||||
|
Ok(xs)
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user