Add some documentation and test to the linear layer. (#151)

* Add some documentation and test to the linear layer.

* Layer norm doc.

* Minor tweaks.
This commit is contained in:
Laurent Mazare
2023-07-12 20:24:23 +01:00
committed by GitHub
parent f09d7e5653
commit 465fc8c0c5
5 changed files with 54 additions and 1 deletions

View File

@ -31,7 +31,9 @@ Cheatsheet:
| | Using PyTorch | Using Candle | | | Using PyTorch | Using Candle |
|------------|------------------------------------------|------------------------------------------------------------------| |------------|------------------------------------------|------------------------------------------------------------------|
| Creation | `torch.Tensor([[1, 2], [3, 4]])` | `Tensor::new(&[[1f32, 2.]], [3., 4.]], &Device::Cpu)?` | | Creation | `torch.Tensor([[1, 2], [3, 4]])` | `Tensor::new(` |
| | | ` &[[1f32, 2.]], [3., 4.]],` |
| | | ` &Device::Cpu)?` |
| Indexing | `tensor[:, :4]` | `tensor.i((.., ..4))?` | | Indexing | `tensor[:, :4]` | `tensor.i((.., ..4))?` |
| Operations | `tensor.view((2, 2))` | `tensor.reshape((2, 2))?` | | Operations | `tensor.view((2, 2))` | `tensor.reshape((2, 2))?` |
| Operations | `a.matmul(b)` | `a.matmul(&b)?` | | Operations | `a.matmul(b)` | `a.matmul(&b)?` |

View File

@ -1,3 +1,4 @@
//! Convolution Layers.
use candle::{Result, Tensor}; use candle::{Result, Tensor};
#[derive(Debug, Clone, Copy, PartialEq, Eq)] #[derive(Debug, Clone, Copy, PartialEq, Eq)]

View File

@ -1,3 +1,4 @@
//! Embedding Layer.
use candle::{Result, Tensor}; use candle::{Result, Tensor};
#[derive(Debug)] #[derive(Debug)]

View File

@ -1,3 +1,33 @@
//! Layer Normalization.
//!
//! This layer applies Layer Normalization over a mini-batch of inputs as described in [`Layer
//! Normalization`]. The input is expected to have three dimensions: a batch dimension, a length,
//! and a hidden size, the normalization is applied over the last dimension.
//!
//! # Example
//!
//! ```rust
//! use candle::{Tensor, Device::Cpu};
//! use candle_nn::LayerNorm;
//! # fn main() -> candle::Result<()> {
//!
//! let w = Tensor::new(1f32, &Cpu)?;
//! let b = Tensor::new(0f32, &Cpu)?;
//! let layer = LayerNorm::new(w, b, 1e-5);
//!
//! let xs = Tensor::new(
//! &[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]],
//! &Cpu)?;
//! let ys = layer.forward(&xs)?;
//! assert_eq!(
//! ys.to_vec3::<f32>()?,
//! &[[[-1.2247356, 0.0, 1.2247356],
//! [-1.2247356, 0.0, 1.2247356],
//! [ 1.2247356, 0.0, -1.2247356]]]);
//! # Ok(()) }
//! ```
//!
//! [`Layer Normalization`]: https://arxiv.org/abs/1607.06450
use candle::{DType, Result, Tensor}; use candle::{DType, Result, Tensor};
// This layer norm version handles both weight and bias so removes the mean. // This layer norm version handles both weight and bias so removes the mean.

View File

@ -1,3 +1,22 @@
//! Linear layer
//!
//! This layer applies a linear transformation to the incoming data, `y = x@w.t() + b`.
//! The bias is optional. The `forward` method can be used to apply the layer, it supports input
//! with a batch dimension (so of shape `(b_sz, in_c)`) or without (of shape `(in_c,)`), the
//! output has shape `(b_sz, out_c)` and `(out_c,)` respectively.
//!
//! ```rust
//! use candle::{Tensor, Device::Cpu};
//! use candle_nn::Linear;
//! # fn main() -> candle::Result<()> {
//!
//! let w = Tensor::new(&[[1f32, 2.], [3., 4.], [5., 6.]], &Cpu)?;
//! let layer = Linear::new(w, None); // Use no bias.
//! let xs = Tensor::new(&[[10f32, 100.]], &Cpu)?;
//! let ys = layer.forward(&xs)?;
//! assert_eq!(ys.to_vec2::<f32>()?, &[[210.0, 430.0, 650.0]]);
//! # Ok(()) }
//! ```
use candle::Tensor; use candle::Tensor;
#[derive(Debug)] #[derive(Debug)]