mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Adding cast + binary kernels.
This commit is contained in:
@ -113,11 +113,11 @@ impl BackendStorage for MetalStorage {
|
||||
|
||||
debug!("{shape:?} {el:?} {:?}", layout.stride());
|
||||
let output_buffer = device.new_buffer(el, self.dtype);
|
||||
// return Ok(Self {
|
||||
// buffer: output_buffer,
|
||||
// device: device.clone(),
|
||||
// dtype,
|
||||
// });
|
||||
return Ok(Self {
|
||||
buffer: output_buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
});
|
||||
let function = self
|
||||
.device
|
||||
.kernels
|
||||
@ -185,9 +185,9 @@ impl BackendStorage for MetalStorage {
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
let capture = metal::CaptureManager::shared();
|
||||
capture.stop_capture();
|
||||
panic!("Done");
|
||||
// let capture = metal::CaptureManager::shared();
|
||||
// capture.stop_capture();
|
||||
// panic!("Done");
|
||||
|
||||
Ok(Self {
|
||||
buffer: output_buffer,
|
||||
@ -283,7 +283,58 @@ impl BackendStorage for MetalStorage {
|
||||
}
|
||||
|
||||
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
|
||||
todo!("Implement {:?} {layout:?} - {dtype:?}", self.dtype)
|
||||
let device = self.device();
|
||||
let shape = layout.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
// TODO remove
|
||||
// return Ok(Self {
|
||||
// buffer,
|
||||
// device: device.clone(),
|
||||
// dtype,
|
||||
// });
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if layout.is_contiguous() {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
|
||||
let kernel_name = match (self.dtype, dtype) {
|
||||
(DType::U32, DType::F32) => "cast_u32_f32",
|
||||
(left, right) => todo!("to dtype {left:?} - {right:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_cast_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
&self.buffer,
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
todo!(
|
||||
"TODO Implement the kernel calling cast {:?}-{:?}",
|
||||
self.dtype,
|
||||
dtype
|
||||
);
|
||||
}
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"cast {:?} - {:?} - {:?} - {:?}",
|
||||
dtype,
|
||||
start.elapsed(),
|
||||
self.buffer.length(),
|
||||
buffer.length()
|
||||
);
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
|
||||
@ -294,11 +345,11 @@ impl BackendStorage for MetalStorage {
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
// TODO remove
|
||||
return Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
});
|
||||
// return Ok(Self {
|
||||
// buffer,
|
||||
// device: device.clone(),
|
||||
// dtype,
|
||||
// });
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if layout.is_contiguous() {
|
||||
use candle_metal_kernels::unary::contiguous;
|
||||
@ -328,7 +379,7 @@ impl BackendStorage for MetalStorage {
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"Unary {:?} - {:?} - {:?} - {:?}",
|
||||
B::KERNEL,
|
||||
@ -344,10 +395,87 @@ impl BackendStorage for MetalStorage {
|
||||
})
|
||||
}
|
||||
|
||||
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
|
||||
debug!("TODO Binary {:?}", B::NAME);
|
||||
Ok(self.clone())
|
||||
// todo!()
|
||||
fn binary_impl<B: BinaryOpT>(
|
||||
&self,
|
||||
rhs: &Self,
|
||||
lhs_l: &Layout,
|
||||
rhs_l: &Layout,
|
||||
) -> Result<Self> {
|
||||
let device = self.device();
|
||||
let dtype = self.dtype;
|
||||
let shape = lhs_l.shape();
|
||||
let dims = shape.dims();
|
||||
let el_count = shape.elem_count();
|
||||
let mut buffer = device.new_buffer(el_count, dtype);
|
||||
let command_buffer = device.command_queue.new_command_buffer();
|
||||
if lhs_l.is_contiguous() && rhs_l.is_contiguous() {
|
||||
use candle_metal_kernels::binary::contiguous;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("add", DType::F32) => contiguous::add::FLOAT,
|
||||
("badd", DType::F32) => contiguous::add::FLOAT,
|
||||
("sub", DType::F32) => contiguous::sub::FLOAT,
|
||||
("bsub", DType::F32) => contiguous::sub::FLOAT,
|
||||
("mul", DType::F32) => contiguous::mul::FLOAT,
|
||||
("bmul", DType::F32) => contiguous::mul::FLOAT,
|
||||
("div", DType::F32) => contiguous::div::FLOAT,
|
||||
("bdiv", DType::F32) => contiguous::div::FLOAT,
|
||||
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_binary_contiguous(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
el_count,
|
||||
&self.buffer,
|
||||
&rhs.buffer,
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
} else {
|
||||
use candle_metal_kernels::binary::strided;
|
||||
|
||||
let kernel_name = match (B::KERNEL, dtype) {
|
||||
("badd", DType::F32) => strided::add::FLOAT,
|
||||
("bsub", DType::F32) => strided::sub::FLOAT,
|
||||
("bmul", DType::F32) => strided::mul::FLOAT,
|
||||
("bdiv", DType::F32) => strided::div::FLOAT,
|
||||
(name, dtype) => todo!("Match {name} - {dtype:?}"),
|
||||
};
|
||||
candle_metal_kernels::call_binary_strided(
|
||||
&device.device,
|
||||
&command_buffer,
|
||||
&device.kernels,
|
||||
kernel_name,
|
||||
lhs_l.dims(),
|
||||
&self.buffer,
|
||||
&lhs_l.stride(),
|
||||
lhs_l.start_offset(),
|
||||
&rhs.buffer,
|
||||
&rhs_l.stride(),
|
||||
rhs_l.start_offset(),
|
||||
&mut buffer,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
}
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
debug!(
|
||||
"Binary {:?} - {:?} - {:?} - {:?}",
|
||||
B::KERNEL,
|
||||
start.elapsed(),
|
||||
self.buffer.length(),
|
||||
buffer.length()
|
||||
);
|
||||
|
||||
Ok(Self {
|
||||
buffer,
|
||||
device: device.clone(),
|
||||
dtype,
|
||||
})
|
||||
}
|
||||
|
||||
fn where_cond(&self, _: &Layout, rhs: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
|
||||
@ -546,25 +674,25 @@ impl MetalStorage {
|
||||
}
|
||||
|
||||
debug!("GEMM");
|
||||
let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
encode_gemm::<Float32, Float32, Float32>(
|
||||
&self.device,
|
||||
&command_buffer,
|
||||
transpose_left,
|
||||
transpose_right,
|
||||
&self.buffer,
|
||||
&rhs.buffer,
|
||||
&mut out_buffer,
|
||||
m as NSUInteger,
|
||||
n as NSUInteger,
|
||||
k as NSUInteger,
|
||||
alpha,
|
||||
beta,
|
||||
)
|
||||
.map_err(MetalError::from)?;
|
||||
// let command_buffer = self.device.command_queue.new_command_buffer();
|
||||
// encode_gemm::<Float32, Float32, Float32>(
|
||||
// &self.device,
|
||||
// &command_buffer,
|
||||
// transpose_left,
|
||||
// transpose_right,
|
||||
// &self.buffer,
|
||||
// &rhs.buffer,
|
||||
// &mut out_buffer,
|
||||
// m as NSUInteger,
|
||||
// n as NSUInteger,
|
||||
// k as NSUInteger,
|
||||
// alpha,
|
||||
// beta,
|
||||
// )
|
||||
// .map_err(MetalError::from)?;
|
||||
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_scheduled();
|
||||
// command_buffer.commit();
|
||||
// command_buffer.wait_until_scheduled();
|
||||
|
||||
// println!("lhs {:?} {m} {k}", self.buffer.length());
|
||||
// println!("rhs {:?} {k} {n}", rhs.buffer.length());
|
||||
@ -588,18 +716,18 @@ impl BackendDevice for MetalDevice {
|
||||
fn new(ordinal: usize) -> Result<Self> {
|
||||
let device = metal::Device::all().swap_remove(ordinal);
|
||||
|
||||
let capture = metal::CaptureManager::shared();
|
||||
let descriptor = metal::CaptureDescriptor::new();
|
||||
descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
||||
println!("{:?}", std::env::current_dir()?);
|
||||
descriptor.set_capture_device(&device);
|
||||
let mut dir = std::env::current_dir()?;
|
||||
dir.push("out.gputrace");
|
||||
descriptor.set_output_url(dir);
|
||||
// let capture = metal::CaptureManager::shared();
|
||||
// let descriptor = metal::CaptureDescriptor::new();
|
||||
// descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
|
||||
// println!("{:?}", std::env::current_dir()?);
|
||||
// descriptor.set_capture_device(&device);
|
||||
// let mut dir = std::env::current_dir()?;
|
||||
// dir.push("out.gputrace");
|
||||
// descriptor.set_output_url(dir);
|
||||
|
||||
capture
|
||||
.start_capture(&descriptor)
|
||||
.map_err(MetalError::from)?;
|
||||
// capture
|
||||
// .start_capture(&descriptor)
|
||||
// .map_err(MetalError::from)?;
|
||||
let command_queue = device.new_command_queue();
|
||||
// let command_buffer = _command_queue.new_owned_command_buffer();
|
||||
let kernels = Arc::new(Kernels::new());
|
||||
|
@ -239,15 +239,13 @@ fn main() -> anyhow::Result<()> {
|
||||
Some(args.temperature)
|
||||
};
|
||||
tracing_subscriber::fmt::init();
|
||||
// let _guard = if args.tracing {
|
||||
// // let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
// // tracing_subscriber::registry().with(chrome_layer).init();
|
||||
// tracing_subscriber::fmt::init();
|
||||
// None
|
||||
// // Some(guard)
|
||||
// } else {
|
||||
// None
|
||||
// };
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
@ -375,7 +373,8 @@ fn main() -> anyhow::Result<()> {
|
||||
let logits = logits.squeeze(0)?;
|
||||
// TODO Remove this once implementation is finished.
|
||||
let logits = logits.ones_like()?;
|
||||
logits_processor.sample(&logits)?
|
||||
// logits_processor.sample(&logits)?
|
||||
15043
|
||||
};
|
||||
let prompt_dt = start_prompt_processing.elapsed();
|
||||
all_tokens.push(next_token);
|
||||
@ -399,8 +398,9 @@ fn main() -> anyhow::Result<()> {
|
||||
)?
|
||||
};
|
||||
// TODO Remove this once implementation is finished.
|
||||
let logits = logits.ones_like()?;
|
||||
next_token = logits_processor.sample(&logits)?;
|
||||
// let logits = logits.ones_like()?;
|
||||
// next_token = logits_processor.sample(&logits)?;
|
||||
let next_token = 15043;
|
||||
all_tokens.push(next_token);
|
||||
print_token(next_token, &tokenizer);
|
||||
if next_token == eos_token {
|
||||
|
78
candle-metal-kernels/src/binary.metal
Normal file
78
candle-metal-kernels/src/binary.metal
Normal file
@ -0,0 +1,78 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define BINARY(FN, TYPENAME, OUT_TYPENAME, FN_NAME, FN_NAME_STRIDED) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const TYPENAME *left, \
|
||||
device const TYPENAME *right, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
TYPENAME x = left[i]; \
|
||||
TYPENAME y = right[i]; \
|
||||
output[i] = OUT_TYPENAME(FN); \
|
||||
} \
|
||||
}\
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *left_strides, \
|
||||
constant size_t *right_strides, \
|
||||
device const TYPENAME *left, \
|
||||
device const TYPENAME *right, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
TYPENAME x = left[get_strided_index(i, num_dims, dims, left_strides)]; \
|
||||
TYPENAME y = left[get_strided_index(i, num_dims, dims, right_strides)]; \
|
||||
output[i] = OUT_TYPENAME(FN); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define BINARY_OP(FN, NAME) \
|
||||
BINARY(FN, float, float, NAME##_float, NAME##_float_strided); \
|
||||
BINARY(FN, half, half, NAME##_half, NAME##_half_strided);
|
||||
|
||||
#define BFLOAT_BINARY_OP(FN, NAME) \
|
||||
BINARY(NAME, bfloat, bfloat, NAME##_bfloat, NAME##_bfloat_strided);
|
||||
|
||||
|
||||
BINARY_OP(x + y, add)
|
||||
BINARY_OP(x - y, sub)
|
||||
BINARY_OP(x * y, mul)
|
||||
BINARY_OP(x / y, div)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
BFLOAT_BINARY_OP(x + y, badd)
|
||||
BFLOAT_BINARY_OP(x - y, bsub)
|
||||
BFLOAT_BINARY_OP(x * y, bmul)
|
||||
BFLOAT_BINARY_OP(x / y, bdiv)
|
||||
#endif
|
58
candle-metal-kernels/src/cast.metal
Normal file
58
candle-metal-kernels/src/cast.metal
Normal file
@ -0,0 +1,58 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
idx /= dims[dim_idx];
|
||||
}
|
||||
return strided_i;
|
||||
}
|
||||
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define CAST(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME) \
|
||||
kernel void FN_NAME( \
|
||||
constant size_t &dim, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = RIGHT_TYPENAME(input[i]); \
|
||||
} \
|
||||
} \
|
||||
kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &dim, \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
device const LEFT_TYPENAME *input, \
|
||||
device RIGHT_TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
uint thread_index [[thread_index_in_threadgroup]] \
|
||||
) { \
|
||||
const size_t length = (dim + threadgroup_size - 1) / threadgroup_size; \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = RIGHT_TYPENAME(input[get_strided_index(i, num_dims, dims, strides)]); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
||||
CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
|
||||
|
||||
#if __METAL_VERSION__ >= 310
|
||||
#endif
|
@ -9,15 +9,19 @@ use std::sync::RwLock;
|
||||
const AFFINE: &str = include_str!("affine.metal");
|
||||
const INDEXING: &str = include_str!("indexing.metal");
|
||||
const UNARY: &str = include_str!("unary.metal");
|
||||
const BINARY: &str = include_str!("binary.metal");
|
||||
const CAST: &str = include_str!("cast.metal");
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum Source {
|
||||
Affine,
|
||||
Indexing,
|
||||
Unary,
|
||||
Binary,
|
||||
Cast,
|
||||
}
|
||||
|
||||
macro_rules! unary{
|
||||
macro_rules! ops{
|
||||
($($name:ident),+) => {
|
||||
|
||||
pub mod contiguous {
|
||||
@ -47,7 +51,10 @@ macro_rules! unary{
|
||||
}
|
||||
|
||||
pub mod unary {
|
||||
unary!(cos, sin, exp, sqr, sqrt, neg);
|
||||
ops!(cos, sin, exp, sqr, sqrt, neg);
|
||||
}
|
||||
pub mod binary {
|
||||
ops!(add, sub, mul, div);
|
||||
}
|
||||
|
||||
// static LIBRARY_SOURCES: Lazy<HashMap<&'static str, &'static str>> = Lazy::new(|| {
|
||||
@ -109,7 +116,9 @@ impl Kernels {
|
||||
match source {
|
||||
Source::Affine => AFFINE,
|
||||
Source::Unary => UNARY,
|
||||
Source::Binary => BINARY,
|
||||
Source::Indexing => INDEXING,
|
||||
Source::Cast => CAST,
|
||||
}
|
||||
}
|
||||
|
||||
@ -234,10 +243,9 @@ pub fn call_unary_strided(
|
||||
(strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
strides.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(4, std::mem::size_of::<usize>() as u64, void_ptr(&offset));
|
||||
|
||||
encoder.set_buffer(5, Some(&input), 0);
|
||||
encoder.set_buffer(6, Some(&output), 0);
|
||||
encoder.set_buffer(4, Some(&input), offset as u64);
|
||||
encoder.set_buffer(5, Some(&output), 0);
|
||||
|
||||
let width = output.length();
|
||||
|
||||
@ -258,6 +266,170 @@ pub fn call_unary_strided(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_binary_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: binary::contiguous::Kernel,
|
||||
length: usize,
|
||||
left: &Buffer,
|
||||
right: &Buffer,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// println!("Kernel {:?}", kernel_name.0);
|
||||
// assert_eq!(input.length(), output.length());
|
||||
let func = kernels.load_function(device, Source::Binary, kernel_name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, 4, void_ptr(&length));
|
||||
encoder.set_buffer(1, Some(&left), 0);
|
||||
encoder.set_buffer(2, Some(&right), 0);
|
||||
encoder.set_buffer(3, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), length as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_binary_strided(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
name: binary::strided::Kernel,
|
||||
shape: &[usize],
|
||||
left_input: &Buffer,
|
||||
left_strides: &[usize],
|
||||
left_offset: usize,
|
||||
right_input: &Buffer,
|
||||
right_strides: &[usize],
|
||||
right_offset: usize,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
let func = kernels.load_function(device, Source::Binary, name.0)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let num_dims: usize = shape.len() as usize;
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
let length: usize = shape.iter().product();
|
||||
encoder.set_bytes(0, std::mem::size_of::<usize>() as u64, void_ptr(&length));
|
||||
encoder.set_bytes(1, std::mem::size_of::<usize>() as u64, void_ptr(&num_dims));
|
||||
encoder.set_bytes(
|
||||
2,
|
||||
(shape.len() * std::mem::size_of::<usize>()) as u64,
|
||||
shape.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(
|
||||
3,
|
||||
(left_strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
left_strides.as_ptr() as *const c_void,
|
||||
);
|
||||
encoder.set_bytes(
|
||||
4,
|
||||
(right_strides.len() * std::mem::size_of::<usize>()) as u64,
|
||||
right_strides.as_ptr() as *const c_void,
|
||||
);
|
||||
|
||||
encoder.set_buffer(5, Some(&left_input), left_offset as u64);
|
||||
encoder.set_buffer(6, Some(&right_input), right_offset as u64);
|
||||
encoder.set_buffer(7, Some(&output), 0);
|
||||
|
||||
let width = output.length();
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let thread_group_size = MTLSize {
|
||||
width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width),
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn call_cast_contiguous(
|
||||
device: &Device,
|
||||
command_buffer: &CommandBufferRef,
|
||||
kernels: &Kernels,
|
||||
kernel_name: &'static str,
|
||||
length: usize,
|
||||
input: &Buffer,
|
||||
output: &mut Buffer,
|
||||
) -> Result<(), MetalKernelError> {
|
||||
// println!("Kernel {:?}", kernel_name.0);
|
||||
// assert_eq!(input.length(), output.length());
|
||||
let func = kernels.load_function(device, Source::Cast, kernel_name)?;
|
||||
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
|
||||
pipeline_state_descriptor.set_compute_function(Some(&func));
|
||||
|
||||
let pipeline = device
|
||||
.new_compute_pipeline_state_with_function(
|
||||
pipeline_state_descriptor.compute_function().unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let encoder = command_buffer.new_compute_command_encoder();
|
||||
encoder.set_compute_pipeline_state(&pipeline);
|
||||
|
||||
encoder.set_bytes(0, 4, void_ptr(&length));
|
||||
encoder.set_buffer(1, Some(&input), 0);
|
||||
encoder.set_buffer(2, Some(&output), 0);
|
||||
|
||||
let thread_group_count = MTLSize {
|
||||
width: 1,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), length as u64);
|
||||
let thread_group_size = MTLSize {
|
||||
width,
|
||||
height: 1,
|
||||
depth: 1,
|
||||
};
|
||||
|
||||
encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
|
||||
encoder.end_encoding();
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn void_ptr<T>(v: &T) -> *const c_void {
|
||||
(v as *const T).cast()
|
||||
}
|
||||
@ -310,6 +482,39 @@ mod tests {
|
||||
output.read_to_vec::<T>(v.len())
|
||||
}
|
||||
|
||||
fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let left = device.new_buffer_with_data(
|
||||
x.as_ptr() as *const core::ffi::c_void,
|
||||
(x.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let right = device.new_buffer_with_data(
|
||||
y.as_ptr() as *const core::ffi::c_void,
|
||||
(y.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((x.len() * core::mem::size_of::<T>()) as u64, options);
|
||||
call_binary_contiguous(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
x.len(),
|
||||
&left,
|
||||
&right,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<T>(x.len())
|
||||
}
|
||||
|
||||
fn run_strided<T: Clone>(
|
||||
v: &[T],
|
||||
kernel: unary::strided::Kernel,
|
||||
@ -421,6 +626,62 @@ mod tests {
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn binary_add_f32() {
|
||||
let left = vec![1.0f32, 2.0, 3.0];
|
||||
let right = vec![2.0f32, 3.1, 4.2];
|
||||
let results = run_binary(&left, &right, binary::contiguous::add::FLOAT);
|
||||
let expected: Vec<_> = left
|
||||
.iter()
|
||||
.zip(right.iter())
|
||||
.map(|(&x, &y)| x + y)
|
||||
.collect();
|
||||
assert_eq!(approx(results, 4), vec![3.0f32, 5.1, 7.2]);
|
||||
assert_eq!(approx(expected, 4), vec![3.0f32, 5.1, 7.2]);
|
||||
}
|
||||
|
||||
fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
|
||||
let device = device();
|
||||
let kernels = Kernels::new();
|
||||
let command_queue = device.new_command_queue();
|
||||
let command_buffer = command_queue.new_command_buffer();
|
||||
let options = MTLResourceOptions::StorageModeManaged;
|
||||
let input = device.new_buffer_with_data(
|
||||
v.as_ptr() as *const core::ffi::c_void,
|
||||
(v.len() * core::mem::size_of::<T>()) as u64,
|
||||
options,
|
||||
);
|
||||
let mut output = device.new_buffer((v.len() * core::mem::size_of::<U>()) as u64, options);
|
||||
call_cast_contiguous(
|
||||
&device,
|
||||
&command_buffer,
|
||||
&kernels,
|
||||
name,
|
||||
v.len(),
|
||||
&input,
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
command_buffer.commit();
|
||||
command_buffer.wait_until_completed();
|
||||
output.read_to_vec::<U>(v.len())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cast_u32_f32() {
|
||||
let v = vec![1u32, 2, 3];
|
||||
let results = cast(&v, "cast_u32_f32");
|
||||
let expected: Vec<_> = v.iter().map(|&v| v as f32).collect();
|
||||
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
|
||||
|
||||
let v = vec![1.0f32; 10_000];
|
||||
let results = run(&v, unary::contiguous::cos::FLOAT);
|
||||
let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
|
||||
assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
|
||||
assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn affine() {
|
||||
let device = device();
|
||||
|
@ -1,19 +1,12 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
struct Info{
|
||||
device size_t &num_dims;
|
||||
device size_t *dims;
|
||||
device size_t *strides;
|
||||
};
|
||||
|
||||
METAL_FUNC uint get_strided_index(
|
||||
uint idx,
|
||||
constant size_t &num_dims,
|
||||
constant size_t *dims,
|
||||
constant size_t *strides,
|
||||
constant size_t &offset
|
||||
constant size_t *strides
|
||||
) {
|
||||
uint strided_i = offset;
|
||||
uint strided_i = 0;
|
||||
for (uint d = 0; d < num_dims; d++) {
|
||||
uint dim_idx = num_dims - 1 - d;
|
||||
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
|
||||
@ -48,7 +41,6 @@ kernel void FN_NAME_STRIDED( \
|
||||
constant size_t &num_dims, \
|
||||
constant size_t *dims, \
|
||||
constant size_t *strides, \
|
||||
constant size_t &offset, \
|
||||
device const TYPENAME *input, \
|
||||
device TYPENAME *output, \
|
||||
uint threadgroup_size [[threads_per_threadgroup]], \
|
||||
@ -58,7 +50,7 @@ kernel void FN_NAME_STRIDED( \
|
||||
const size_t start = thread_index * length; \
|
||||
const size_t stop = min(start + length, dim); \
|
||||
for (size_t i = start; i < stop; i++){ \
|
||||
output[i] = TYPENAME(FN(input[get_strided_index(i, num_dims, dims, strides, offset)])); \
|
||||
output[i] = TYPENAME(FN(input[get_strided_index(i, num_dims, dims, strides)])); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,7 @@ use std::collections::HashMap;
|
||||
|
||||
use candle::quantized::QTensor;
|
||||
use candle::quantized::{ggml_file, gguf_file};
|
||||
use candle::{Device, IndexOp, Result, Tensor, D};
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, Module};
|
||||
|
||||
pub const MAX_SEQ_LEN: usize = 4096;
|
||||
@ -196,15 +196,15 @@ fn precomput_freqs_cis(
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), device)?;
|
||||
let range: Vec<f32> = (0..MAX_SEQ_LEN).map(|r| r as f32).collect();
|
||||
let idx_theta = Tensor::new(range.as_slice(), device)?
|
||||
.reshape((MAX_SEQ_LEN, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// TODO This change avoids allocating on Metal and then casting since allocating directly on
|
||||
// CPU as f32 seems just as fast
|
||||
// let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
|
||||
// .to_dtype(DType::F32)?
|
||||
// let idx_theta = Tensor::new(range.as_slice(), device)?
|
||||
// .reshape((MAX_SEQ_LEN, 1))?
|
||||
// .matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// TODO This change avoids allocating on Metal and then casting since allocating directly on
|
||||
// CPU as f32 seems just as fast
|
||||
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((MAX_SEQ_LEN, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
let cos = idx_theta.cos()?;
|
||||
let sin = idx_theta.sin()?;
|
||||
Ok((cos, sin))
|
||||
|
Reference in New Issue
Block a user