mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Adding support for codellama in examples.
Codellama requires bf16 for now (error to convert from bf16 to f16). Multiprocess demo not functional for it because flash-attn only supports f16 for now.
This commit is contained in:
@ -3,6 +3,7 @@ use candle::{CpuStorage, CustomOp1, DType, Device, IndexOp, Layout, Result, Shap
|
||||
use candle_nn::{rms_norm, Embedding, Linear, Module, RmsNorm, VarBuilder};
|
||||
use cudarc::nccl::safe::{Comm, ReduceOp};
|
||||
use half::f16;
|
||||
use serde::Deserialize;
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
@ -110,26 +111,34 @@ impl TensorParallelRowLinear {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
pub struct Config {
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub vocab_size: usize,
|
||||
pub n_layer: usize,
|
||||
pub n_head: usize,
|
||||
pub n_embd: usize,
|
||||
pub n_key_value_head: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub rms_norm_eps: f64,
|
||||
#[serde(default = "default_rope")]
|
||||
pub rope_theta: f32,
|
||||
}
|
||||
|
||||
fn default_rope() -> f32 {
|
||||
10_000.0
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn config_7b() -> Self {
|
||||
Self {
|
||||
hidden_size: 4096,
|
||||
intermediate_size: 11008,
|
||||
vocab_size: 32000,
|
||||
n_layer: 32,
|
||||
n_head: 32,
|
||||
n_embd: 4096,
|
||||
n_key_value_head: 32,
|
||||
num_hidden_layers: 32,
|
||||
num_attention_heads: 32,
|
||||
hidden_size: 4096,
|
||||
num_key_value_heads: 32,
|
||||
rms_norm_eps: 1e-5,
|
||||
rope_theta: 10_000.0,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -143,12 +152,12 @@ pub struct Cache {
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new(config: &Config, device: &Device) -> Result<Self> {
|
||||
pub fn new(dtype: DType, config: &Config, device: &Device) -> Result<Self> {
|
||||
// precompute freqs_cis
|
||||
let n_elem = config.n_embd / config.n_head;
|
||||
let n_elem = config.hidden_size / config.num_attention_heads;
|
||||
let theta: Vec<_> = (0..n_elem)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
|
||||
.map(|i| 1f32 / config.rope_theta.powf(i as f32 / n_elem as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), device)?;
|
||||
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
|
||||
@ -158,10 +167,10 @@ impl Cache {
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
|
||||
let cos = idx_theta.cos()?.to_dtype(DType::F16)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(DType::F16)?;
|
||||
let cos = idx_theta.cos()?.to_dtype(dtype)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(dtype)?;
|
||||
Ok(Self {
|
||||
kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
|
||||
kvs: Arc::new(Mutex::new(vec![None; config.num_hidden_layers])),
|
||||
cos,
|
||||
sin,
|
||||
})
|
||||
@ -185,21 +194,21 @@ fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
struct CausalSelfAttention {
|
||||
qkv_proj: TensorParallelColumnLinear,
|
||||
o_proj: TensorParallelRowLinear,
|
||||
n_head: usize,
|
||||
n_key_value_head: usize,
|
||||
num_attention_heads: usize,
|
||||
num_key_value_heads: usize,
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
}
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (b_sz, _, seq_len, n_embd) = x.shape().dims4()?;
|
||||
let (b_sz, _, seq_len, hidden_size) = x.shape().dims4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, n_embd / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
|
||||
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
|
||||
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
|
||||
Ok(rope)
|
||||
@ -209,30 +218,31 @@ impl CausalSelfAttention {
|
||||
let (b_sz, seq_len, _) = x.shape().dims3()?;
|
||||
|
||||
let qkv = self.qkv_proj.forward(x)?;
|
||||
let n_embd = self.n_head * self.head_dim;
|
||||
let hidden_size = self.num_attention_heads * self.head_dim;
|
||||
|
||||
let q = qkv.i((.., .., ..self.n_head * self.head_dim))?;
|
||||
let q = qkv.i((.., .., ..self.num_attention_heads * self.head_dim))?;
|
||||
let k = qkv.i((
|
||||
..,
|
||||
..,
|
||||
self.n_head * self.head_dim
|
||||
..self.n_head * self.head_dim + self.n_key_value_head * self.head_dim,
|
||||
self.num_attention_heads * self.head_dim
|
||||
..self.num_attention_heads * self.head_dim
|
||||
+ self.num_key_value_heads * self.head_dim,
|
||||
))?;
|
||||
let v = qkv.i((
|
||||
..,
|
||||
..,
|
||||
self.n_head * self.head_dim + self.n_key_value_head * self.head_dim..,
|
||||
self.num_attention_heads * self.head_dim + self.num_key_value_heads * self.head_dim..,
|
||||
))?;
|
||||
// todo!("Q {:?} K {:?} V {:?} - x {:?}", q.shape(), k.shape(), v.shape(), x.shape());
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
let mut v = v
|
||||
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||
@ -266,13 +276,13 @@ impl CausalSelfAttention {
|
||||
let y = candle_flash_attn::flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?
|
||||
.transpose(1, 2)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_head / self.n_key_value_head;
|
||||
let n_rep = self.num_attention_heads / self.num_key_value_heads;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
@ -295,9 +305,9 @@ impl CausalSelfAttention {
|
||||
Ok(Self {
|
||||
qkv_proj,
|
||||
o_proj,
|
||||
n_head: cfg.n_head / comm.world_size(),
|
||||
n_key_value_head: cfg.n_key_value_head / comm.world_size(),
|
||||
head_dim: cfg.hidden_size / cfg.n_head,
|
||||
num_attention_heads: cfg.num_attention_heads / comm.world_size(),
|
||||
num_key_value_heads: cfg.num_key_value_heads / comm.world_size(),
|
||||
head_dim: cfg.hidden_size / cfg.num_attention_heads,
|
||||
cache: cache.clone(),
|
||||
})
|
||||
}
|
||||
@ -409,7 +419,7 @@ impl Llama {
|
||||
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let norm = rms_norm(cfg.hidden_size, 1e-5, vb.pp("model.norm"))?;
|
||||
let blocks: Vec<_> = (0..cfg.n_layer)
|
||||
let blocks: Vec<_> = (0..cfg.num_hidden_layers)
|
||||
.map(|i| {
|
||||
Block::load(
|
||||
vb.pp(&format!("model.layers.{i}")),
|
||||
|
Reference in New Issue
Block a user