diff --git a/Cargo.toml b/Cargo.toml index e8d637a3..c8fa56f2 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -6,3 +6,7 @@ members = [ "candle-hub", "candle-pyo3", ] + +[profile.release-with-debug] +inherits = "release" +debug = true diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index e5d80ff4..6f8dc378 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -476,27 +476,28 @@ impl Tensor { let dim = a_dims.len(); if dim < 2 || b_dims.len() != dim { - return Err(Error::ShapeMismatchBinaryOp { + Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op: "matmul", - }); + })? } let m = a_dims[dim - 2]; let k = a_dims[dim - 1]; let k2 = b_dims[dim - 2]; let n = b_dims[dim - 1]; - if k != k2 { - return Err(Error::ShapeMismatchBinaryOp { - lhs: self.shape().clone(), - rhs: rhs.shape().clone(), - op: "matmul", - }); - } let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]); let batching: usize = a_dims[..dim - 2].iter().product(); + let batching_b: usize = b_dims[..dim - 2].iter().product(); + if k != k2 || batching != batching_b { + Err(Error::ShapeMismatchBinaryOp { + lhs: self.shape().clone(), + rhs: rhs.shape().clone(), + op: "matmul", + })? + } let storage = self.storage.matmul( &rhs.storage, @@ -660,6 +661,11 @@ impl Tensor { self.shape().dims() } + pub fn dim(&self, dim: D) -> Result { + let dim = dim.to_index(self.shape(), "dim")?; + Ok(self.dims()[dim]) + } + pub fn layout(&self) -> &Layout { &self.layout } diff --git a/candle-examples/examples/falcon/main.rs b/candle-examples/examples/falcon/main.rs new file mode 100644 index 00000000..832183ad --- /dev/null +++ b/candle-examples/examples/falcon/main.rs @@ -0,0 +1,88 @@ +#![allow(dead_code)] + +#[cfg(feature = "mkl")] +extern crate intel_mkl_src; + +use anyhow::{Error as E, Result}; +use candle::{DType, Device, Tensor}; +use clap::Parser; + +mod model; +use model::{Config, Falcon, VarBuilder}; + +const DTYPE: DType = DType::F16; + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, + + #[arg(long)] + prompt: String, + + /// The seed to use when generating random samples. + #[arg(long, default_value_t = 299792458)] + seed: u64, + + #[arg(long, default_value = "tiiuae/falcon-7b")] + model_id: String, + + #[arg(long, default_value = "refs/pr/43")] + revision: String, +} + +#[tokio::main] +async fn main() -> Result<()> { + use candle_hub::{api::Api, Repo, RepoType}; + use tokenizers::Tokenizer; + + let args = Args::parse(); + let device = if args.cpu { + Device::Cpu + } else { + Device::new_cuda(0)? + }; + + let start = std::time::Instant::now(); + let api = Api::new()?; + let repo = Repo::with_revision(args.model_id, RepoType::Model, args.revision); + let tokenizer_filename = api.get(&repo, "tokenizer.json").await?; + let mut filenames = vec![]; + for rfilename in [ + "model-00001-of-00002.safetensors", + "model-00002-of-00002.safetensors", + ] { + let filename = api.get(&repo, rfilename).await?; + filenames.push(filename); + } + println!("retrieved the files in {:?}", start.elapsed()); + let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; + + let start = std::time::Instant::now(); + let weights = filenames + .iter() + .map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? })) + .collect::>>()?; + let weights = weights + .iter() + .map(|f| Ok(f.deserialize()?)) + .collect::>>()?; + + let vb = VarBuilder::from_safetensors(weights, DTYPE, &device); + let config = Config::falcon7b(); + config.validate()?; + let mut model = Falcon::load(&vb, config)?; + println!("loaded the model in {:?}", start.elapsed()); + + let tokens = tokenizer + .encode(args.prompt, true) + .map_err(E::msg)? + .get_ids() + .to_vec(); + let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?; + let logits = model.forward(&tokens)?; + println!("{}", logits); + Ok(()) +} diff --git a/candle-examples/examples/falcon/model.rs b/candle-examples/examples/falcon/model.rs new file mode 100644 index 00000000..d7a2e8b8 --- /dev/null +++ b/candle-examples/examples/falcon/model.rs @@ -0,0 +1,590 @@ +use anyhow::Result; +use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor, D}; +use std::collections::HashMap; + +pub struct VarBuilder<'a> { + safetensors: Option<(HashMap, Vec>)>, + dtype: DType, + device: Device, +} + +impl<'a> VarBuilder<'a> { + pub fn from_safetensors( + safetensors: Vec>, + dtype: DType, + device: &Device, + ) -> Self { + let mut routing = HashMap::new(); + for (index, sf) in safetensors.iter().enumerate() { + for k in sf.names() { + routing.insert(k.to_string(), index); + } + } + Self { + safetensors: Some((routing, safetensors)), + device: device.clone(), + dtype, + } + } + + pub fn zeros(dtype: DType, device: &Device) -> Self { + Self { + safetensors: None, + device: device.clone(), + dtype, + } + } + + pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { + let s: Shape = s.into(); + match &self.safetensors { + None => Tensor::zeros(s, self.dtype, &self.device), + Some((routing, safetensors)) => { + // Unwrap or 0 just to let the proper error flow. + let index = routing.get(tensor_name).unwrap_or(&0); + let tensor = safetensors[*index] + .tensor(tensor_name, &self.device)? + .to_dtype(self.dtype)?; + if *tensor.shape() != s { + let msg = format!("shape mismatch for {tensor_name}"); + Err(candle::Error::UnexpectedShape { + msg, + expected: s, + got: tensor.shape().clone(), + })? + } + Ok(tensor) + } + } + } +} + +#[derive(Debug)] +struct Linear { + weight: Tensor, + bias: Option, +} + +impl Linear { + fn load(size1: usize, size2: usize, bias: bool, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + let bias = if bias { + Some(vb.get(size2, &format!("{p}.bias"))?) + } else { + None + }; + Ok(Self { weight, bias }) + } + + fn forward(&self, x: &Tensor) -> candle::Result { + let (bsize, _, _) = x.shape().r3()?; + let w = self.weight.broadcast_left(bsize)?.t()?; + let x = x.matmul(&w)?; + match &self.bias { + None => Ok(x), + Some(bias) => x.broadcast_add(bias), + } + } +} + +#[derive(Debug)] +struct LayerNorm { + weight: Tensor, + bias: Tensor, + eps: f64, +} + +impl LayerNorm { + fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { + Self { weight, bias, eps } + } + + fn load(size: usize, eps: f64, p: &str, vb: &VarBuilder) -> Result { + let (weight, bias) = match ( + vb.get(size, &format!("{p}.weight")), + vb.get(size, &format!("{p}.bias")), + ) { + (Ok(weight), Ok(bias)) => (weight, bias), + (Err(err), _) | (_, Err(err)) => { + if let (Ok(weight), Ok(bias)) = ( + vb.get(size, &format!("{p}.gamma")), + vb.get(size, &format!("{p}.beta")), + ) { + (weight, bias) + } else { + return Err(err.into()); + } + } + }; + Ok(Self { weight, bias, eps }) + } + + fn forward(&self, x: &Tensor) -> Result { + let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; + let mean_x = (x.sum(&[2])? / hidden_size as f64)?; + let x = x.broadcast_sub(&mean_x)?; + let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; + let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; + let x = x_normed + .broadcast_mul(&self.weight)? + .broadcast_add(&self.bias)?; + Ok(x) + } +} + +#[derive(Debug)] +struct Dropout { + pr: f64, +} + +impl Dropout { + fn new(pr: f64) -> Self { + Self { pr } + } + + fn forward(&self, x: &Tensor) -> Result { + // TODO + Ok(x.clone()) + } +} + +#[derive(Debug)] +struct Embedding { + embeddings: Tensor, + hidden_size: usize, +} + +impl Embedding { + fn new(embeddings: Tensor, hidden_size: usize) -> Self { + Self { + embeddings, + hidden_size, + } + } + + fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { + let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; + Ok(Self::new(embeddings, hidden_size)) + } + + fn forward(&self, indexes: &Tensor) -> Result { + let mut final_dims = indexes.dims().to_vec(); + final_dims.push(self.hidden_size); + let indexes = indexes.flatten_all()?; + let values = Tensor::embedding(&indexes, &self.embeddings)?; + let values = values.reshape(final_dims)?; + Ok(values) + } +} + +// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py +#[derive(Debug)] +pub struct Config { + vocab_size: usize, + hidden_size: usize, + num_hidden_layers: usize, + num_attention_heads: usize, + layer_norm_epsilon: f64, + initializer_range: f64, + use_cache: bool, + bos_token_id: u32, + eos_token_id: u32, + hidden_dropout: f64, + attention_dropout: f64, + n_head_kv: Option, + alibi: bool, + new_decoder_architecture: bool, + multi_query: bool, + parallel_attn: bool, + bias: bool, +} + +impl Default for Config { + fn default() -> Self { + Self { + vocab_size: 65024, + hidden_size: 4544, + num_hidden_layers: 32, + num_attention_heads: 71, + layer_norm_epsilon: 1e-5, + initializer_range: 0.02, + use_cache: true, + bos_token_id: 11, + eos_token_id: 11, + hidden_dropout: 0.0, + attention_dropout: 0.0, + n_head_kv: None, + alibi: false, + new_decoder_architecture: false, + multi_query: true, + parallel_attn: true, + bias: false, + } + } +} + +impl Config { + pub fn validate(&self) -> Result<()> { + if self.alibi { + anyhow::bail!("alibi is not supported"); + } + if self.new_decoder_architecture { + anyhow::bail!("new_decoder_architecture is not supported"); + } + if self.n_head_kv.is_some() { + anyhow::bail!("n_head_kv is not supported"); + } + Ok(()) + } + + // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json + pub fn falcon7b() -> Self { + // This is currently on par with the defaults, the defaults come from the Python default + // arguments for the config initialization whereas the following come from the json config. + Self { + vocab_size: 65024, + hidden_size: 4544, + num_hidden_layers: 32, + num_attention_heads: 71, + layer_norm_epsilon: 1e-5, + initializer_range: 0.02, + use_cache: true, + bos_token_id: 11, + eos_token_id: 11, + hidden_dropout: 0., + attention_dropout: 0., + n_head_kv: None, + alibi: false, + new_decoder_architecture: false, + multi_query: true, + parallel_attn: true, + bias: false, + } + } + + fn head_dim(&self) -> usize { + self.hidden_size / self.num_attention_heads + } + + fn rotary(&self) -> bool { + !self.alibi + } +} + +fn rotate_half(x: &Tensor) -> Result { + let l = x.dim(D::Minus1)?; + let x1 = x.narrow(D::Minus1, 0, l / 2)?; + let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?; + let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?; + Ok(x21) +} + +#[derive(Debug)] +struct FalconRotaryEmbedding { + inv_freq: Tensor, +} + +impl FalconRotaryEmbedding { + fn load(vb: &VarBuilder, cfg: &Config) -> Result { + let head_dim = cfg.head_dim(); + let inv_freq: Vec<_> = (0..head_dim) + .step_by(2) + .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32)) + .collect(); + let inv_freq = Tensor::new(inv_freq.as_slice(), &vb.device)?; + Ok(Self { inv_freq }) + } + + fn cos_sin( + &mut self, + seq_len: usize, + device: &Device, + dtype: DType, + ) -> Result<(Tensor, Tensor)> { + // TODO: Add the cache. + let t: Vec<_> = (0..seq_len).map(|c| c as u32).collect(); + let t = Tensor::new(t.as_slice(), device)?.to_dtype(dtype)?; + let inv_freq = self.inv_freq.to_dtype(dtype)?; + let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?; + let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; + let cos = emb.cos()?; + let sin = emb.sin()?; + Ok((cos, sin)) + } + + fn forward(&mut self, query: &Tensor, key: &Tensor) -> Result<(Tensor, Tensor)> { + let (_batch, seq_len, _head_dim) = query.shape().r3()?; + let (cos, sin) = self.cos_sin(seq_len, &query.device(), query.dtype())?; + let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?; + let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?; + Ok((qs, ks)) + } +} + +fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result { + let shape = mask.shape(); + let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?; + let m = mask.where_cond(&on_true, on_false)?; + Ok(m) +} + +#[derive(Debug)] +struct FalconAttention { + query_key_value: Linear, + dense: Linear, + maybe_rotary: Option, + inv_norm_factor: f64, + multi_query: bool, + num_heads: usize, + head_dim: usize, + n_head_kv: usize, +} + +impl FalconAttention { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let maybe_rotary = if cfg.rotary() { + let rotary = FalconRotaryEmbedding::load(vb, cfg)?; + Some(rotary) + } else { + None + }; + let head_dim = cfg.head_dim(); + let hidden_size = cfg.hidden_size; + let qkv_out_dim = if cfg.multi_query { + hidden_size + 2 * head_dim + } else { + 3 * hidden_size + }; + let query_key_value = Linear::load( + hidden_size, + qkv_out_dim, + cfg.bias, + &format!("{p}.query_key_value"), + vb, + )?; + let dense = Linear::load( + hidden_size, + hidden_size, + cfg.bias, + &format!("{p}.dense"), + vb, + )?; + Ok(Self { + query_key_value, + dense, + maybe_rotary, + inv_norm_factor: 1. / (head_dim as f64).sqrt(), + multi_query: cfg.multi_query, + num_heads: cfg.num_attention_heads, + n_head_kv: cfg.n_head_kv.unwrap_or(1), + head_dim, + }) + } + + fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { + let (b_sz, seq_len, _) = fused_qkv.shape().r3()?; + if !self.multi_query { + let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?; + let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?; + let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?; + let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?; + Ok((q, k, v)) + } else { + let fused_qkv = + fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?; + let d = fused_qkv.dim(D::Minus2)?; + let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?; + let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?; + let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?; + Ok((q, k, v)) + } + } + + fn forward(&mut self, x: &Tensor, mask: &Tensor) -> Result { + let fused_qkv = self.query_key_value.forward(x)?; + let head_dim = self.head_dim; + let (query, key, value) = self.split_heads(&fused_qkv)?; + let (b_sz, q_len, _, _) = query.shape().r4()?; + let query = query + .transpose(1, 2)? + .reshape((b_sz * self.num_heads, q_len, head_dim))?; + let key = key + .transpose(1, 2)? + .reshape((b_sz * self.n_head_kv, q_len, head_dim))?; + let value = value + .transpose(1, 2)? + .reshape((b_sz * self.n_head_kv, q_len, head_dim))?; + let (query, key) = if let Some(r) = &mut self.maybe_rotary { + r.forward(&query, &key)? + } else { + (query, key) + }; + let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?; + // TODO: layer_past, use_cache? + let query = query.reshape((b_sz, self.num_heads, q_len, head_dim))?; + let key = key.reshape((b_sz, self.n_head_kv, q_len, head_dim))?; + let value = value.reshape((b_sz, self.n_head_kv, q_len, head_dim))?; + + // Only handle alibi is None here, and non-flash attention. + let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?; + let attention_scores = (attention_scores + mask)?.softmax(D::Minus1)?; + let attn_output = attention_scores + .matmul(&value)? + .reshape((b_sz, self.num_heads, q_len, head_dim))? + .transpose(1, 2)? + .reshape((b_sz, q_len, self.num_heads * head_dim))?; + Ok(attn_output) + } +} + +#[derive(Debug)] +struct FalconMlp { + dense_h_to_4h: Linear, + dense_4h_to_h: Linear, + dropout: Dropout, +} + +impl FalconMlp { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let h = cfg.hidden_size; + let b = cfg.bias; + let dense_h_to_4h = Linear::load(h, 4 * h, b, &format!("{p}.dense_h_to_4h"), vb)?; + let dense_4h_to_h = Linear::load(4 * h, h, b, &format!("{p}.dense_4h_to_h"), vb)?; + let dropout = Dropout::new(cfg.hidden_dropout); + Ok(Self { + dense_h_to_4h, + dense_4h_to_h, + dropout, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let x = self.dense_4h_to_h.forward(x)?.gelu()?; + let x = self.dense_h_to_4h.forward(&x)?; + Ok(x) + } +} + +#[derive(Debug)] +struct FalconDecoderLayer { + inp_layernorm: LayerNorm, + self_attention: FalconAttention, + post_attention_layernorm: Option, + mlp: FalconMlp, + parallel_attn: bool, +} + +impl FalconDecoderLayer { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let mlp = FalconMlp::load(&format!("{p}.mlp"), vb, cfg)?; + let inp_layernorm = LayerNorm::load( + cfg.hidden_size, + cfg.layer_norm_epsilon, + &format!("{p}.input_layernorm"), + vb, + )?; + let self_attention = FalconAttention::load(&format!("{p}.self_attention"), vb, cfg)?; + let post_attention_layernorm = if cfg.parallel_attn { + None + } else { + let ln = LayerNorm::load( + cfg.hidden_size, + cfg.layer_norm_epsilon, + &format!("{p}.post_attention_layernorm"), + vb, + )?; + Some(ln) + }; + Ok(Self { + inp_layernorm, + self_attention, + post_attention_layernorm, + mlp, + parallel_attn: cfg.parallel_attn, + }) + } + + fn forward(&mut self, x: &Tensor, mask: &Tensor) -> Result { + let residual = x.clone(); + let ln_attn = self.inp_layernorm.forward(x)?; + let attn_output = self.self_attention.forward(&ln_attn, mask)?; + let (residual, ln_mlp) = match &self.post_attention_layernorm { + None => (residual, ln_attn), + Some(pal) => { + // This should include some dropout. + let residual = (&attn_output + &residual)?; + let ln_mlp = pal.forward(&residual)?; + (residual, ln_mlp) + } + }; + let mlp_output = self.mlp.forward(&ln_mlp)?; + + let mlp_output = if self.parallel_attn { + (mlp_output + attn_output)? + } else { + mlp_output + }; + let output = (mlp_output + residual)?; + Ok(output) + } +} + +#[derive(Debug)] +pub struct Falcon { + word_embeddings: Embedding, + h: Vec, + ln_f: LayerNorm, + config: Config, +} + +fn make_causal_mask(t: usize) -> Result { + let mask: Vec<_> = (0..t) + .flat_map(|i| (0..t).map(move |j| u32::from(j > i))) + .collect(); + let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?; + Ok(mask) +} + +fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result { + // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?; + let mask = make_causal_mask(seq_len)?; + let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?; + Ok(mask) +} + +impl Falcon { + pub fn load(vb: &VarBuilder, cfg: Config) -> Result { + let word_embeddings = Embedding::load( + cfg.vocab_size, + cfg.hidden_size, + "transformer.word_embeddings", + vb, + )?; + let h = (0..cfg.num_hidden_layers) + .map(|i| FalconDecoderLayer::load(&format!("transformer.h.{i}"), vb, &cfg)) + .collect::>>()?; + let ln_f = LayerNorm::load( + cfg.hidden_size, + cfg.layer_norm_epsilon, + "transformer.ln_f", + vb, + )?; + Ok(Self { + word_embeddings, + h, + ln_f, + config: cfg, + }) + } + + pub fn forward(&mut self, input_ids: &Tensor) -> Result { + let (b_sz, seq_len) = input_ids.shape().r2()?; + let mut hidden_state = self.word_embeddings.forward(input_ids)?; + let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(&input_ids.device())?; + for block in self.h.iter_mut() { + hidden_state = block.forward(&hidden_state, &causal_mask)?; + } + let hidden_state = self.ln_f.forward(&hidden_state)?; + Ok(hidden_state) + } +}