mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 04:00:28 +00:00
dinov2 - read images from disk and compute the class probabilities (#503)
* Load the image from disk and convert it to a tensor. * Tweak the function name.
This commit is contained in:
@ -85,7 +85,7 @@ impl LayerScale {
|
||||
|
||||
impl Module for LayerScale {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs * &self.gamma
|
||||
xs.broadcast_mul(&self.gamma)
|
||||
}
|
||||
}
|
||||
|
||||
@ -306,10 +306,17 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
// TODO: apply imagenet normalization.
|
||||
let image = candle_examples::load_image(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
let _model = vit_small(vb)?;
|
||||
let model = vit_small(vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?;
|
||||
println!("{prs}");
|
||||
Ok(())
|
||||
}
|
||||
|
@ -332,7 +332,7 @@ fn run(args: Args) -> Result<()> {
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
crate::utils::save_image(&image, image_filename)?
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
}
|
||||
|
||||
@ -346,7 +346,7 @@ fn run(args: Args) -> Result<()> {
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
crate::utils::save_image(&image, image_filename)?
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -12,25 +12,6 @@ pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
|
||||
Tensor::from_vec(vs, steps, &Device::Cpu)
|
||||
}
|
||||
|
||||
/// Saves an image to disk using the image crate, this expects an input with shape
|
||||
/// (c, width, height).
|
||||
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
||||
let p = p.as_ref();
|
||||
let (channel, width, height) = img.dims3()?;
|
||||
if channel != 3 {
|
||||
candle::bail!("save_image expects an input of shape (3, width, height)")
|
||||
}
|
||||
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
|
||||
let pixels = img.to_vec1::<u8>()?;
|
||||
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
||||
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
||||
Some(image) => image,
|
||||
None => candle::bail!("error saving image {p:?}"),
|
||||
};
|
||||
image.save(p).map_err(candle::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Wrap the conv2d op to provide some tracing.
|
||||
#[derive(Debug)]
|
||||
pub struct Conv2d {
|
||||
|
Reference in New Issue
Block a user