dinov2 - read images from disk and compute the class probabilities (#503)

* Load the image from disk and convert it to a tensor.

* Tweak the function name.
This commit is contained in:
Laurent Mazare
2023-08-18 15:50:33 +01:00
committed by GitHub
parent 95462c6a2e
commit 4f1541526c
4 changed files with 48 additions and 24 deletions

View File

@ -85,7 +85,7 @@ impl LayerScale {
impl Module for LayerScale { impl Module for LayerScale {
fn forward(&self, xs: &Tensor) -> Result<Tensor> { fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs * &self.gamma xs.broadcast_mul(&self.gamma)
} }
} }
@ -306,10 +306,17 @@ pub fn main() -> anyhow::Result<()> {
let device = candle_examples::device(args.cpu)?; let device = candle_examples::device(args.cpu)?;
// TODO: apply imagenet normalization.
let image = candle_examples::load_image(args.image)?;
println!("loaded image {image:?}");
let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? }; let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? };
let weights = weights.deserialize()?; let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device); let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
let _model = vit_small(vb)?; let model = vit_small(vb)?;
println!("model built"); println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?;
println!("{prs}");
Ok(()) Ok(())
} }

View File

@ -332,7 +332,7 @@ fn run(args: Args) -> Result<()> {
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?; let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
let image_filename = let image_filename =
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1)); output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
crate::utils::save_image(&image, image_filename)? candle_examples::save_image(&image, image_filename)?
} }
} }
@ -346,7 +346,7 @@ fn run(args: Args) -> Result<()> {
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?; let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?; let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
let image_filename = output_filename(&final_image, idx + 1, num_samples, None); let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
crate::utils::save_image(&image, image_filename)? candle_examples::save_image(&image, image_filename)?
} }
Ok(()) Ok(())
} }

View File

@ -12,25 +12,6 @@ pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
Tensor::from_vec(vs, steps, &Device::Cpu) Tensor::from_vec(vs, steps, &Device::Cpu)
} }
/// Saves an image to disk using the image crate, this expects an input with shape
/// (c, width, height).
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
let p = p.as_ref();
let (channel, width, height) = img.dims3()?;
if channel != 3 {
candle::bail!("save_image expects an input of shape (3, width, height)")
}
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
let pixels = img.to_vec1::<u8>()?;
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
Some(image) => image,
None => candle::bail!("error saving image {p:?}"),
};
image.save(p).map_err(candle::Error::wrap)?;
Ok(())
}
// Wrap the conv2d op to provide some tracing. // Wrap the conv2d op to provide some tracing.
#[derive(Debug)] #[derive(Debug)]
pub struct Conv2d { pub struct Conv2d {

View File

@ -1,4 +1,4 @@
use candle::{Device, Result}; use candle::{Device, Result, Tensor};
pub fn device(cpu: bool) -> Result<Device> { pub fn device(cpu: bool) -> Result<Device> {
if cpu { if cpu {
@ -12,6 +12,42 @@ pub fn device(cpu: bool) -> Result<Device> {
} }
} }
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 224, 224). imagenet normaliation is applied.
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
let img = image::io::Reader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(224, 224, image::imageops::FilterType::Triangle);
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (3, 224, 224), &Device::Cpu)?;
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
/// Saves an image to disk using the image crate, this expects an input with shape
/// (c, width, height).
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
let p = p.as_ref();
let (channel, width, height) = img.dims3()?;
if channel != 3 {
candle::bail!("save_image expects an input of shape (3, width, height)")
}
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
let pixels = img.to_vec1::<u8>()?;
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
Some(image) => image,
None => candle::bail!("error saving image {p:?}"),
};
image.save(p).map_err(candle::Error::wrap)?;
Ok(())
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
// NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856 // NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856