mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
dinov2 - read images from disk and compute the class probabilities (#503)
* Load the image from disk and convert it to a tensor. * Tweak the function name.
This commit is contained in:
@ -85,7 +85,7 @@ impl LayerScale {
|
||||
|
||||
impl Module for LayerScale {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs * &self.gamma
|
||||
xs.broadcast_mul(&self.gamma)
|
||||
}
|
||||
}
|
||||
|
||||
@ -306,10 +306,17 @@ pub fn main() -> anyhow::Result<()> {
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
|
||||
// TODO: apply imagenet normalization.
|
||||
let image = candle_examples::load_image(args.image)?;
|
||||
println!("loaded image {image:?}");
|
||||
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(args.model)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
let _model = vit_small(vb)?;
|
||||
let model = vit_small(vb)?;
|
||||
println!("model built");
|
||||
let logits = model.forward(&image.unsqueeze(0)?)?;
|
||||
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?;
|
||||
println!("{prs}");
|
||||
Ok(())
|
||||
}
|
||||
|
@ -332,7 +332,7 @@ fn run(args: Args) -> Result<()> {
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
crate::utils::save_image(&image, image_filename)?
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
}
|
||||
|
||||
@ -346,7 +346,7 @@ fn run(args: Args) -> Result<()> {
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let image = (image * 255.)?.to_dtype(DType::U8)?.i(0)?;
|
||||
let image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
crate::utils::save_image(&image, image_filename)?
|
||||
candle_examples::save_image(&image, image_filename)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -12,25 +12,6 @@ pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
|
||||
Tensor::from_vec(vs, steps, &Device::Cpu)
|
||||
}
|
||||
|
||||
/// Saves an image to disk using the image crate, this expects an input with shape
|
||||
/// (c, width, height).
|
||||
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
||||
let p = p.as_ref();
|
||||
let (channel, width, height) = img.dims3()?;
|
||||
if channel != 3 {
|
||||
candle::bail!("save_image expects an input of shape (3, width, height)")
|
||||
}
|
||||
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
|
||||
let pixels = img.to_vec1::<u8>()?;
|
||||
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
||||
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
||||
Some(image) => image,
|
||||
None => candle::bail!("error saving image {p:?}"),
|
||||
};
|
||||
image.save(p).map_err(candle::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// Wrap the conv2d op to provide some tracing.
|
||||
#[derive(Debug)]
|
||||
pub struct Conv2d {
|
||||
|
@ -1,4 +1,4 @@
|
||||
use candle::{Device, Result};
|
||||
use candle::{Device, Result, Tensor};
|
||||
|
||||
pub fn device(cpu: bool) -> Result<Device> {
|
||||
if cpu {
|
||||
@ -12,6 +12,42 @@ pub fn device(cpu: bool) -> Result<Device> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Loads an image from disk using the image crate, this returns a tensor with shape
|
||||
/// (3, 224, 224). imagenet normaliation is applied.
|
||||
pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
|
||||
let img = image::io::Reader::open(p)?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?
|
||||
.resize_to_fill(224, 224, image::imageops::FilterType::Triangle);
|
||||
let img = img.to_rgb8();
|
||||
let data = img.into_raw();
|
||||
let data = Tensor::from_vec(data, (3, 224, 224), &Device::Cpu)?;
|
||||
let mean = Tensor::new(&[0.485f32, 0.456, 0.406], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
let std = Tensor::new(&[0.229f32, 0.224, 0.225], &Device::Cpu)?.reshape((3, 1, 1))?;
|
||||
(data.to_dtype(candle::DType::F32)? / 255.)?
|
||||
.broadcast_sub(&mean)?
|
||||
.broadcast_div(&std)
|
||||
}
|
||||
|
||||
/// Saves an image to disk using the image crate, this expects an input with shape
|
||||
/// (c, width, height).
|
||||
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
||||
let p = p.as_ref();
|
||||
let (channel, width, height) = img.dims3()?;
|
||||
if channel != 3 {
|
||||
candle::bail!("save_image expects an input of shape (3, width, height)")
|
||||
}
|
||||
let img = img.transpose(0, 1)?.t()?.flatten_all()?;
|
||||
let pixels = img.to_vec1::<u8>()?;
|
||||
let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
|
||||
match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
|
||||
Some(image) => image,
|
||||
None => candle::bail!("error saving image {p:?}"),
|
||||
};
|
||||
image.save(p).map_err(candle::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
// NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856
|
||||
|
Reference in New Issue
Block a user