mirror of
https://github.com/huggingface/candle.git
synced 2025-06-21 04:10:46 +00:00
Cuda kernels for fast min/max reductions (#203)
* Add the min/max cuda kernels. * Better integration of the cuda kernels.
This commit is contained in:
@ -2,6 +2,7 @@
|
||||
// https://people.maths.ox.ac.uk/gilesm/cuda/prac4/reduction.pdf
|
||||
#include "cuda_utils.cuh"
|
||||
#include<stdint.h>
|
||||
#include<cmath>
|
||||
|
||||
const int BLOCK_SIZE = 1024;
|
||||
|
||||
@ -27,7 +28,7 @@ __device__ void fast_sum(
|
||||
size_t tid = threadIdx.x;
|
||||
size_t dst_id = blockIdx.x;
|
||||
|
||||
shr[tid] = 0.0;
|
||||
shr[tid] = 0;
|
||||
// Elements summed in this block range from dst_id * el_to_sum_per_block
|
||||
// to (dst_id + 1) * el_to_sum_per_block.
|
||||
size_t start_idx = dst_id * el_to_sum_per_block;
|
||||
@ -49,11 +50,113 @@ __device__ void fast_sum(
|
||||
if (tid < s) shr[tid] += shr[tid + s];
|
||||
}
|
||||
|
||||
if (tid == 0) atomicAdd(dst + dst_id, shr[0]);
|
||||
if (tid == 0) dst[dst_id] = shr[0];
|
||||
}
|
||||
|
||||
#define FAST_SUM_OP(TYPENAME, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
template <typename T>
|
||||
__device__ void fast_max(
|
||||
const size_t src_numel,
|
||||
const size_t el_to_sum_per_block,
|
||||
const size_t num_dims,
|
||||
const size_t *info,
|
||||
const T *src,
|
||||
T *dst
|
||||
) {
|
||||
const size_t *dims = info;
|
||||
const size_t *strides = info + num_dims;
|
||||
|
||||
__shared__ T shr[BLOCK_SIZE];
|
||||
size_t tid = threadIdx.x;
|
||||
size_t dst_id = blockIdx.x;
|
||||
|
||||
shr[tid] = -INFINITY;
|
||||
// Elements summed in this block range from dst_id * el_to_sum_per_block
|
||||
// to (dst_id + 1) * el_to_sum_per_block.
|
||||
size_t start_idx = dst_id * el_to_sum_per_block;
|
||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
|
||||
size_t idx = start_idx + tid;
|
||||
|
||||
while (idx < stop_idx) {
|
||||
// TODO: Fast version for the contiguous case.
|
||||
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
|
||||
shr[tid] = maxg(shr[tid], src[strided_i]);
|
||||
idx += blockDim.x;
|
||||
}
|
||||
|
||||
// Parallel reduction, see the slides:
|
||||
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
|
||||
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
__syncthreads();
|
||||
if (tid < s) shr[tid] = maxg(shr[tid], shr[tid + s]);
|
||||
}
|
||||
|
||||
if (tid == 0) dst[dst_id] = shr[0];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void fast_min(
|
||||
const size_t src_numel,
|
||||
const size_t el_to_sum_per_block,
|
||||
const size_t num_dims,
|
||||
const size_t *info,
|
||||
const T *src,
|
||||
T *dst
|
||||
) {
|
||||
const size_t *dims = info;
|
||||
const size_t *strides = info + num_dims;
|
||||
|
||||
__shared__ T shr[BLOCK_SIZE];
|
||||
size_t tid = threadIdx.x;
|
||||
size_t dst_id = blockIdx.x;
|
||||
|
||||
shr[tid] = INFINITY;
|
||||
// Elements summed in this block range from dst_id * el_to_sum_per_block
|
||||
// to (dst_id + 1) * el_to_sum_per_block.
|
||||
size_t start_idx = dst_id * el_to_sum_per_block;
|
||||
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
|
||||
size_t idx = start_idx + tid;
|
||||
|
||||
while (idx < stop_idx) {
|
||||
// TODO: Fast version for the contiguous case.
|
||||
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
|
||||
shr[tid] = ming(shr[tid], src[strided_i]);
|
||||
idx += blockDim.x;
|
||||
}
|
||||
|
||||
// Parallel reduction, see the slides:
|
||||
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
|
||||
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
__syncthreads();
|
||||
if (tid < s) shr[tid] = ming(shr[tid], shr[tid + s]);
|
||||
}
|
||||
|
||||
if (tid == 0) dst[dst_id] = shr[0];
|
||||
}
|
||||
|
||||
#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, SUM_NAME) \
|
||||
extern "C" __global__ void MIN_NAME( \
|
||||
const size_t src_numel, \
|
||||
const size_t el_to_sum_per_block, \
|
||||
const size_t num_dims, \
|
||||
const size_t *info, \
|
||||
const TYPENAME *src, \
|
||||
TYPENAME *dst \
|
||||
) { \
|
||||
fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
|
||||
} \
|
||||
extern "C" __global__ void MAX_NAME( \
|
||||
const size_t src_numel, \
|
||||
const size_t el_to_sum_per_block, \
|
||||
const size_t num_dims, \
|
||||
const size_t *info, \
|
||||
const TYPENAME *src, \
|
||||
TYPENAME *dst \
|
||||
) { \
|
||||
fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
|
||||
} \
|
||||
extern "C" __global__ void SUM_NAME( \
|
||||
const size_t src_numel, \
|
||||
const size_t el_to_sum_per_block, \
|
||||
const size_t num_dims, \
|
||||
@ -106,18 +209,18 @@ extern "C" __global__ void FN_NAME( \
|
||||
|
||||
#if __CUDA_ARCH__ >= 800
|
||||
SUM_OP(__nv_bfloat16, sum_bf16)
|
||||
FAST_SUM_OP(__nv_bfloat16, fast_sum_bf16)
|
||||
FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_sum_bf16)
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
SUM_OP(__half, sum_f16)
|
||||
FAST_SUM_OP(__half, fast_sum_f16)
|
||||
FAST_OP(__half, fast_min_f16, fast_max_f16, fast_sum_f16)
|
||||
#endif
|
||||
|
||||
SUM_OP(float, sum_f32)
|
||||
SUM_OP(double, sum_f64)
|
||||
SUM_OP(uint32_t, sum_u32)
|
||||
|
||||
FAST_SUM_OP(float, fast_sum_f32)
|
||||
FAST_SUM_OP(double, fast_sum_f64)
|
||||
FAST_SUM_OP(uint32_t, fast_sum_u32)
|
||||
FAST_OP(float, fast_min_f32, fast_max_f32, fast_sum_f32)
|
||||
FAST_OP(double, fast_min_f64, fast_max_f64, fast_sum_f64)
|
||||
FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_sum_u32)
|
||||
|
Reference in New Issue
Block a user