Cuda kernels for fast min/max reductions (#203)

* Add the min/max cuda kernels.

* Better integration of the cuda kernels.
This commit is contained in:
Laurent Mazare
2023-07-19 19:12:27 +02:00
committed by GitHub
parent 001f9a59ce
commit 536c5e702e
3 changed files with 130 additions and 22 deletions

View File

@ -515,8 +515,8 @@ impl<'a> Map1 for Sum<'a> {
} }
} }
struct FastSum<'a>(&'a [usize]); struct FastReduce<'a>(&'a [usize], crate::op::ReduceOp);
impl<'a> Map1 for FastSum<'a> { impl<'a> Map1 for FastReduce<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>( fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self, &self,
src: &CudaSlice<T>, src: &CudaSlice<T>,
@ -557,8 +557,14 @@ impl<'a> Map1 for FastSum<'a> {
.htod_copy([dims.as_slice(), stride.as_slice()].concat()) .htod_copy([dims.as_slice(), stride.as_slice()].concat())
.w()?; .w()?;
let src = &src.slice(layout.start_offset()..); let src = &src.slice(layout.start_offset()..);
let func = dev.get_or_load_func(&kernel_name::<T>("fast_sum"), kernels::REDUCE)?; let name = match self.1 {
let out = dev.alloc_zeros::<T>(dst_el).w()?; crate::op::ReduceOp::Sum => "fast_sum",
crate::op::ReduceOp::Min => "fast_min",
crate::op::ReduceOp::Max => "fast_max",
};
let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?;
// SAFETY: filled in by the follow up kernel.
let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out); let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
// SAFETY: ffi. // SAFETY: ffi.
unsafe { func.launch(cfg, params) }.w()?; unsafe { func.launch(cfg, params) }.w()?;
@ -961,15 +967,9 @@ impl BackendStorage for CudaStorage {
layout: &Layout, layout: &Layout,
sum_dims: &[usize], sum_dims: &[usize],
) -> Result<Self> { ) -> Result<Self> {
match op { let device = self.device().clone();
crate::op::ReduceOp::Sum => { let slice = FastReduce(sum_dims, op).map(&self.slice, &device, layout)?;
let device = self.device().clone(); Ok(Self { slice, device })
let slice = FastSum(sum_dims).map(&self.slice, &device, layout)?;
Ok(Self { slice, device })
}
crate::op::ReduceOp::Min => Err(CudaError::InternalError("TODO: implement min").into()),
crate::op::ReduceOp::Max => Err(CudaError::InternalError("TODO: implement max").into()),
}
} }
fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()> { fn divide_by_sum_over_dim(&mut self, _: &Shape, _: usize) -> Result<()> {

View File

@ -1,4 +1,6 @@
#include "compatibility.cuh" #include "compatibility.cuh"
#include<stdint.h>
#include<cmath>
// TODO: This is often used to check that the data is contiguous so that // TODO: This is often used to check that the data is contiguous so that
// kernels can be easily mapped. However this only returns true for row // kernels can be easily mapped. However this only returns true for row
@ -140,6 +142,9 @@ __device__ __forceinline__ double absg(double a) { return fabs(a); }
__device__ __forceinline__ float copysigng(float a, float b) { return copysignf(a, b); } __device__ __forceinline__ float copysigng(float a, float b) { return copysignf(a, b); }
__device__ __forceinline__ double copysigng(double a, double b) { return copysign(a, b); } __device__ __forceinline__ double copysigng(double a, double b) { return copysign(a, b); }
__device__ __forceinline__ uint32_t ming(uint32_t a, uint32_t b) { return min(a, b); }
__device__ __forceinline__ uint32_t maxg(uint32_t a, uint32_t b) { return max(a, b); }
#if __CUDA_ARCH__ >= 530 #if __CUDA_ARCH__ >= 530
__device__ __forceinline__ __half powg(__half a, __half b) { return __float2half(powf(__half2float(a), __half2float(b))); } __device__ __forceinline__ __half powg(__half a, __half b) { return __float2half(powf(__half2float(a), __half2float(b))); }
__device__ __forceinline__ bool isnang(__half a) { return __hisnan(a); } __device__ __forceinline__ bool isnang(__half a) { return __hisnan(a); }

View File

@ -2,6 +2,7 @@
// https://people.maths.ox.ac.uk/gilesm/cuda/prac4/reduction.pdf // https://people.maths.ox.ac.uk/gilesm/cuda/prac4/reduction.pdf
#include "cuda_utils.cuh" #include "cuda_utils.cuh"
#include<stdint.h> #include<stdint.h>
#include<cmath>
const int BLOCK_SIZE = 1024; const int BLOCK_SIZE = 1024;
@ -27,7 +28,7 @@ __device__ void fast_sum(
size_t tid = threadIdx.x; size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x; size_t dst_id = blockIdx.x;
shr[tid] = 0.0; shr[tid] = 0;
// Elements summed in this block range from dst_id * el_to_sum_per_block // Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block. // to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block; size_t start_idx = dst_id * el_to_sum_per_block;
@ -49,11 +50,113 @@ __device__ void fast_sum(
if (tid < s) shr[tid] += shr[tid + s]; if (tid < s) shr[tid] += shr[tid + s];
} }
if (tid == 0) atomicAdd(dst + dst_id, shr[0]); if (tid == 0) dst[dst_id] = shr[0];
} }
#define FAST_SUM_OP(TYPENAME, FN_NAME) \ template <typename T>
extern "C" __global__ void FN_NAME( \ __device__ void fast_max(
const size_t src_numel,
const size_t el_to_sum_per_block,
const size_t num_dims,
const size_t *info,
const T *src,
T *dst
) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = -INFINITY;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
shr[tid] = maxg(shr[tid], src[strided_i]);
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s) shr[tid] = maxg(shr[tid], shr[tid + s]);
}
if (tid == 0) dst[dst_id] = shr[0];
}
template <typename T>
__device__ void fast_min(
const size_t src_numel,
const size_t el_to_sum_per_block,
const size_t num_dims,
const size_t *info,
const T *src,
T *dst
) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
__shared__ T shr[BLOCK_SIZE];
size_t tid = threadIdx.x;
size_t dst_id = blockIdx.x;
shr[tid] = INFINITY;
// Elements summed in this block range from dst_id * el_to_sum_per_block
// to (dst_id + 1) * el_to_sum_per_block.
size_t start_idx = dst_id * el_to_sum_per_block;
size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
size_t idx = start_idx + tid;
while (idx < stop_idx) {
// TODO: Fast version for the contiguous case.
size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
shr[tid] = ming(shr[tid], src[strided_i]);
idx += blockDim.x;
}
// Parallel reduction, see the slides:
// https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s) shr[tid] = ming(shr[tid], shr[tid + s]);
}
if (tid == 0) dst[dst_id] = shr[0];
}
#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, SUM_NAME) \
extern "C" __global__ void MIN_NAME( \
const size_t src_numel, \
const size_t el_to_sum_per_block, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void MAX_NAME( \
const size_t src_numel, \
const size_t el_to_sum_per_block, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void SUM_NAME( \
const size_t src_numel, \ const size_t src_numel, \
const size_t el_to_sum_per_block, \ const size_t el_to_sum_per_block, \
const size_t num_dims, \ const size_t num_dims, \
@ -106,18 +209,18 @@ extern "C" __global__ void FN_NAME( \
#if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ >= 800
SUM_OP(__nv_bfloat16, sum_bf16) SUM_OP(__nv_bfloat16, sum_bf16)
FAST_SUM_OP(__nv_bfloat16, fast_sum_bf16) FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_sum_bf16)
#endif #endif
#if __CUDA_ARCH__ >= 530 #if __CUDA_ARCH__ >= 530
SUM_OP(__half, sum_f16) SUM_OP(__half, sum_f16)
FAST_SUM_OP(__half, fast_sum_f16) FAST_OP(__half, fast_min_f16, fast_max_f16, fast_sum_f16)
#endif #endif
SUM_OP(float, sum_f32) SUM_OP(float, sum_f32)
SUM_OP(double, sum_f64) SUM_OP(double, sum_f64)
SUM_OP(uint32_t, sum_u32) SUM_OP(uint32_t, sum_u32)
FAST_SUM_OP(float, fast_sum_f32) FAST_OP(float, fast_min_f32, fast_max_f32, fast_sum_f32)
FAST_SUM_OP(double, fast_sum_f64) FAST_OP(double, fast_min_f64, fast_max_f64, fast_sum_f64)
FAST_SUM_OP(uint32_t, fast_sum_u32) FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_sum_u32)