Explicit caching in llama2.c.

This commit is contained in:
laurent
2024-02-22 10:22:03 +01:00
parent c753f72c85
commit 544018b6d0
4 changed files with 99 additions and 75 deletions

View File

@ -19,7 +19,7 @@ use candle_transformers::generation::LogitsProcessor;
use std::io::Write;
use tokenizers::Tokenizer;
use model::{Config, Llama};
use model::{Cache, Config, Llama};
use qmodel::QLlama;
use weights::TransformerWeights;
@ -160,10 +160,10 @@ enum Model {
}
impl Model {
fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
fn forward(&self, xs: &Tensor, pos: usize, cache: &mut Cache) -> anyhow::Result<Tensor> {
match self {
Self::Llama(l) => Ok(l.forward(xs, pos)?),
Self::QLlama(l) => Ok(l.forward(xs, pos)?),
Self::Llama(l) => Ok(l.forward(xs, pos, cache)?),
Self::QLlama(l) => Ok(l.forward(xs, pos, cache)?),
}
}
}
@ -188,8 +188,8 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
let config = Config::from_reader(&mut file)?;
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
let cache = model::Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
let mut cache = Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, config)?;
let tokens = match &args.pretokenized_dir {
None => {
@ -235,7 +235,7 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size);
for inp_tgt in batch_iter {
let (inp, tgt) = inp_tgt?;
let logits = model.forward(&inp, 0)?;
let logits = model.forward(&inp, 0, &mut cache)?;
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
println!("{}", loss.to_vec0::<f32>()?);
}
@ -261,7 +261,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let is_safetensors = config_path
.extension()
.map_or(false, |v| v == "safetensors");
let (model, config) = if is_gguf {
let (model, config, mut cache) = if is_gguf {
let vb = qmodel::VarBuilder::from_gguf(config_path, &device)?;
let (_vocab_size, dim) = vb
.get_no_shape("model.embed_tokens.weight")?
@ -298,15 +298,15 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
&device,
);
let cache = model::Cache::new(true, &config, fake_vb)?;
let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
(model, config)
let model = Model::QLlama(QLlama::load(vb, config.clone())?);
(model, config, cache)
} else if is_safetensors {
let config = Config::tiny_15m();
let tensors = candle::safetensors::load(config_path, &device)?;
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
(model, config)
let model = Model::Llama(Llama::load(vb, config.clone())?);
(model, config, cache)
} else {
let mut file = std::fs::File::open(config_path)?;
let config = Config::from_reader(&mut file)?;
@ -314,8 +314,8 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
(model, config)
let model = Model::Llama(Llama::load(vb, config.clone())?);
(model, config, cache)
};
println!("starting the inference loop");
@ -338,7 +338,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
let logits = model.forward(&input, index_pos)?;
let logits = model.forward(&input, index_pos, &mut cache)?;
let logits = logits.i((0, logits.dim(1)? - 1))?;
let logits = if common_args.repeat_penalty == 1. || tokens.is_empty() {
logits