mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Use the binary decoder for llama2.c. (#230)
* Use the binary decoder for llama2.c. * Add the temperature. * Formatting tweak. * Fix the rotary embeddings.
This commit is contained in:
@ -13,6 +13,7 @@ use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
||||
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use std::io::Write;
|
||||
|
||||
use model::{Config, Llama};
|
||||
|
||||
@ -38,21 +39,33 @@ struct TransformerWeights {
|
||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||
let mut buf = [0u8; 4];
|
||||
r.read_exact(&mut buf)?;
|
||||
Ok(i32::from_le_bytes(buf))
|
||||
}
|
||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||
let mut buf = [0u8; 4];
|
||||
r.read_exact(&mut buf)?;
|
||||
Ok(i32::from_le_bytes(buf))
|
||||
}
|
||||
|
||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||
r: &mut R,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let mut data_t = vec![0f32; shape.elem_count()];
|
||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||
let dim = Self::read_i32(r)? as usize;
|
||||
let hidden_dim = Self::read_i32(r)? as usize;
|
||||
let n_layers = Self::read_i32(r)? as usize;
|
||||
let n_heads = Self::read_i32(r)? as usize;
|
||||
let n_kv_heads = Self::read_i32(r)? as usize;
|
||||
let vocab_size = Self::read_i32(r)? as usize;
|
||||
let seq_len = Self::read_i32(r)? as usize;
|
||||
let dim = read_i32(r)? as usize;
|
||||
let hidden_dim = read_i32(r)? as usize;
|
||||
let n_layers = read_i32(r)? as usize;
|
||||
let n_heads = read_i32(r)? as usize;
|
||||
let n_kv_heads = read_i32(r)? as usize;
|
||||
let vocab_size = read_i32(r)? as usize;
|
||||
let seq_len = read_i32(r)? as usize;
|
||||
Ok(Self {
|
||||
dim,
|
||||
hidden_dim,
|
||||
@ -71,33 +84,21 @@ impl Config {
|
||||
}
|
||||
|
||||
impl TransformerWeights {
|
||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||
r: &mut R,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let mut data_t = vec![0f32; shape.elem_count()];
|
||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
|
||||
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
||||
let head_size = c.head_size();
|
||||
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
Ok(Self {
|
||||
token_embedding_table,
|
||||
rms_att_weight,
|
||||
@ -181,13 +182,36 @@ struct Args {
|
||||
/// Config file in binary format.
|
||||
#[arg(long)]
|
||||
config: String,
|
||||
|
||||
/// Tokenizer config file in binary format.
|
||||
#[arg(long)]
|
||||
tokenizer: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
}
|
||||
|
||||
struct Tokenizer {
|
||||
tokens: Vec<String>,
|
||||
}
|
||||
|
||||
impl Tokenizer {
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config) -> Result<Self> {
|
||||
let mut tokens = Vec::with_capacity(c.vocab_size);
|
||||
for _token_index in 0..c.vocab_size {
|
||||
let token_len = read_i32(r)?;
|
||||
let mut token = vec![0u8; token_len as usize];
|
||||
r.read_exact(&mut token);
|
||||
tokens.push(String::from_utf8_lossy(&token).into_owned())
|
||||
}
|
||||
Ok(Self { tokens })
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
|
||||
println!("{t}");
|
||||
let mut file = std::fs::File::open(&args.config)?;
|
||||
let config = Config::from_reader(&mut file)?;
|
||||
println!("config: {config:?}");
|
||||
@ -196,13 +220,15 @@ fn main() -> anyhow::Result<()> {
|
||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let model = Llama::load(vb, &cache, &config)?;
|
||||
|
||||
let mut file = std::fs::File::open(&args.tokenizer)?;
|
||||
let tokenizer = Tokenizer::from_reader(&mut file, &config)?;
|
||||
|
||||
println!("starting the inference loop");
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
||||
let mut new_tokens: Vec<u32> = vec![];
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature);
|
||||
let mut index_pos = 0;
|
||||
let mut tokens = vec![1u32];
|
||||
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..config.seq_len - 10 {
|
||||
let start_gen = std::time::Instant::now();
|
||||
let context_size = if cache.use_kv_cache && index > 0 {
|
||||
@ -218,23 +244,14 @@ fn main() -> anyhow::Result<()> {
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
new_tokens.push(next_token);
|
||||
println!("> {:?}", start_gen.elapsed());
|
||||
println!(
|
||||
"{} token: {} '{}'",
|
||||
index + 1,
|
||||
next_token,
|
||||
0,
|
||||
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
|
||||
);
|
||||
print!("{}", tokenizer.tokens[next_token as usize]);
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
||||
config.seq_len,
|
||||
config.seq_len as f64 / dt.as_secs_f64(),
|
||||
0,
|
||||
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
||||
"\n{} tokens generated ({:.2} token/s)\n",
|
||||
tokens.len(),
|
||||
tokens.len() as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
Reference in New Issue
Block a user