mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Use the binary decoder for llama2.c. (#230)
* Use the binary decoder for llama2.c. * Add the temperature. * Formatting tweak. * Fix the rotary embeddings.
This commit is contained in:
@ -13,6 +13,7 @@ use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
|||||||
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
||||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||||
use candle_transformers::generation::LogitsProcessor;
|
use candle_transformers::generation::LogitsProcessor;
|
||||||
|
use std::io::Write;
|
||||||
|
|
||||||
use model::{Config, Llama};
|
use model::{Config, Llama};
|
||||||
|
|
||||||
@ -38,21 +39,33 @@ struct TransformerWeights {
|
|||||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Config {
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
||||||
let mut buf = [0u8; 4];
|
let mut buf = [0u8; 4];
|
||||||
r.read_exact(&mut buf)?;
|
r.read_exact(&mut buf)?;
|
||||||
Ok(i32::from_le_bytes(buf))
|
Ok(i32::from_le_bytes(buf))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||||
|
r: &mut R,
|
||||||
|
shape: S,
|
||||||
|
dev: &Device,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let shape = shape.into();
|
||||||
|
let mut data_t = vec![0f32; shape.elem_count()];
|
||||||
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||||
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||||
|
Ok(tensor)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Config {
|
||||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||||
let dim = Self::read_i32(r)? as usize;
|
let dim = read_i32(r)? as usize;
|
||||||
let hidden_dim = Self::read_i32(r)? as usize;
|
let hidden_dim = read_i32(r)? as usize;
|
||||||
let n_layers = Self::read_i32(r)? as usize;
|
let n_layers = read_i32(r)? as usize;
|
||||||
let n_heads = Self::read_i32(r)? as usize;
|
let n_heads = read_i32(r)? as usize;
|
||||||
let n_kv_heads = Self::read_i32(r)? as usize;
|
let n_kv_heads = read_i32(r)? as usize;
|
||||||
let vocab_size = Self::read_i32(r)? as usize;
|
let vocab_size = read_i32(r)? as usize;
|
||||||
let seq_len = Self::read_i32(r)? as usize;
|
let seq_len = read_i32(r)? as usize;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
dim,
|
dim,
|
||||||
hidden_dim,
|
hidden_dim,
|
||||||
@ -71,33 +84,21 @@ impl Config {
|
|||||||
}
|
}
|
||||||
|
|
||||||
impl TransformerWeights {
|
impl TransformerWeights {
|
||||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
||||||
r: &mut R,
|
|
||||||
shape: S,
|
|
||||||
dev: &Device,
|
|
||||||
) -> Result<Tensor> {
|
|
||||||
let shape = shape.into();
|
|
||||||
let mut data_t = vec![0f32; shape.elem_count()];
|
|
||||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
||||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
||||||
Ok(tensor)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||||
let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||||
let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||||
let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
|
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||||
let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||||
let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||||
let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||||
let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
|
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
||||||
let head_size = c.head_size();
|
let head_size = c.head_size();
|
||||||
let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||||
let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
token_embedding_table,
|
token_embedding_table,
|
||||||
rms_att_weight,
|
rms_att_weight,
|
||||||
@ -181,13 +182,36 @@ struct Args {
|
|||||||
/// Config file in binary format.
|
/// Config file in binary format.
|
||||||
#[arg(long)]
|
#[arg(long)]
|
||||||
config: String,
|
config: String,
|
||||||
|
|
||||||
|
/// Tokenizer config file in binary format.
|
||||||
|
#[arg(long)]
|
||||||
|
tokenizer: String,
|
||||||
|
|
||||||
|
/// The temperature used to generate samples.
|
||||||
|
#[arg(long)]
|
||||||
|
temperature: Option<f64>,
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Tokenizer {
|
||||||
|
tokens: Vec<String>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Tokenizer {
|
||||||
|
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config) -> Result<Self> {
|
||||||
|
let mut tokens = Vec::with_capacity(c.vocab_size);
|
||||||
|
for _token_index in 0..c.vocab_size {
|
||||||
|
let token_len = read_i32(r)?;
|
||||||
|
let mut token = vec![0u8; token_len as usize];
|
||||||
|
r.read_exact(&mut token);
|
||||||
|
tokens.push(String::from_utf8_lossy(&token).into_owned())
|
||||||
|
}
|
||||||
|
Ok(Self { tokens })
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn main() -> anyhow::Result<()> {
|
fn main() -> anyhow::Result<()> {
|
||||||
let args = Args::parse();
|
let args = Args::parse();
|
||||||
let device = candle_examples::device(args.cpu)?;
|
let device = candle_examples::device(args.cpu)?;
|
||||||
let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
|
|
||||||
println!("{t}");
|
|
||||||
let mut file = std::fs::File::open(&args.config)?;
|
let mut file = std::fs::File::open(&args.config)?;
|
||||||
let config = Config::from_reader(&mut file)?;
|
let config = Config::from_reader(&mut file)?;
|
||||||
println!("config: {config:?}");
|
println!("config: {config:?}");
|
||||||
@ -196,13 +220,15 @@ fn main() -> anyhow::Result<()> {
|
|||||||
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
|
||||||
let model = Llama::load(vb, &cache, &config)?;
|
let model = Llama::load(vb, &cache, &config)?;
|
||||||
|
|
||||||
|
let mut file = std::fs::File::open(&args.tokenizer)?;
|
||||||
|
let tokenizer = Tokenizer::from_reader(&mut file, &config)?;
|
||||||
|
|
||||||
println!("starting the inference loop");
|
println!("starting the inference loop");
|
||||||
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature);
|
||||||
let mut new_tokens: Vec<u32> = vec![];
|
|
||||||
let start_gen = std::time::Instant::now();
|
|
||||||
let mut index_pos = 0;
|
let mut index_pos = 0;
|
||||||
let mut tokens = vec![1u32];
|
let mut tokens = vec![1u32];
|
||||||
|
|
||||||
|
let start_gen = std::time::Instant::now();
|
||||||
for index in 0..config.seq_len - 10 {
|
for index in 0..config.seq_len - 10 {
|
||||||
let start_gen = std::time::Instant::now();
|
let start_gen = std::time::Instant::now();
|
||||||
let context_size = if cache.use_kv_cache && index > 0 {
|
let context_size = if cache.use_kv_cache && index > 0 {
|
||||||
@ -218,23 +244,14 @@ fn main() -> anyhow::Result<()> {
|
|||||||
|
|
||||||
let next_token = logits_processor.sample(&logits)?;
|
let next_token = logits_processor.sample(&logits)?;
|
||||||
tokens.push(next_token);
|
tokens.push(next_token);
|
||||||
new_tokens.push(next_token);
|
print!("{}", tokenizer.tokens[next_token as usize]);
|
||||||
println!("> {:?}", start_gen.elapsed());
|
std::io::stdout().flush()?;
|
||||||
println!(
|
|
||||||
"{} token: {} '{}'",
|
|
||||||
index + 1,
|
|
||||||
next_token,
|
|
||||||
0,
|
|
||||||
// tokenizer.decode(vec![next_token], true).map_err(E::msg)?
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
let dt = start_gen.elapsed();
|
let dt = start_gen.elapsed();
|
||||||
println!(
|
println!(
|
||||||
"{} tokens generated ({} token/s)\n----\n{}\n----",
|
"\n{} tokens generated ({:.2} token/s)\n",
|
||||||
config.seq_len,
|
tokens.len(),
|
||||||
config.seq_len as f64 / dt.as_secs_f64(),
|
tokens.len() as f64 / dt.as_secs_f64(),
|
||||||
0,
|
|
||||||
// tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
|
||||||
);
|
);
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
@ -30,12 +30,14 @@ impl Cache {
|
|||||||
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
|
let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
|
||||||
let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
|
let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
|
||||||
|
let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
|
||||||
|
let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
|
||||||
Ok(Self {
|
Ok(Self {
|
||||||
masks: Arc::new(Mutex::new(HashMap::new())),
|
masks: Arc::new(Mutex::new(HashMap::new())),
|
||||||
use_kv_cache,
|
use_kv_cache,
|
||||||
kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])),
|
kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])),
|
||||||
cos: freq_cis_real,
|
cos,
|
||||||
sin: freq_cis_imag,
|
sin,
|
||||||
device: vb.device().clone(),
|
device: vb.device().clone(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
@ -110,16 +112,17 @@ struct CausalSelfAttention {
|
|||||||
|
|
||||||
impl CausalSelfAttention {
|
impl CausalSelfAttention {
|
||||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||||
let (b_sz, _, seq_len, n_embd) = x.dims4()?;
|
let (b_sz, seq_len, h, n_embd) = x.dims4()?;
|
||||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
|
let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
|
||||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2))?;
|
let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
|
||||||
let x0 = x.narrow(D::Minus1, 0, n_embd / 2)?;
|
let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?;
|
||||||
let x1 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
|
let x0 = x.narrow(D::Minus1, 0, 1)?;
|
||||||
|
let x1 = x.narrow(D::Minus1, 1, 1)?;
|
||||||
let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
|
let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
|
||||||
let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
|
let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
|
||||||
let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?;
|
let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?;
|
||||||
Ok(rope)
|
Ok(rope)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user