Allow for different behavior between training and eval (#1213)

* Forward with training.

* Do not use dropout on vgg evaluation.
This commit is contained in:
Laurent Mazare
2023-10-29 07:53:09 +01:00
committed by GitHub
parent dece37c6f4
commit 55bc3382cf
8 changed files with 83 additions and 22 deletions

View File

@ -125,3 +125,15 @@ impl<T: Fn(&Tensor) -> Result<Tensor>> Module for T {
self(xs) self(xs)
} }
} }
// A trait defining a module with forward method using a single tensor argument and a flag to
// separate the training and evaluation behaviors.
pub trait ModuleT {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor>;
}
impl<M: Module> ModuleT for M {
fn forward_t(&self, xs: &Tensor, _train: bool) -> Result<Tensor> {
self.forward(xs)
}
}

View File

@ -2271,6 +2271,11 @@ impl Tensor {
m.forward(self) m.forward(self)
} }
/// Run the `forward` method of `m` on `self`.
pub fn apply_t<M: crate::ModuleT>(&self, m: &M, train: bool) -> Result<Self> {
m.forward_t(self, train)
}
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> { pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap() self.storage.read().unwrap()
} }

View File

@ -9,7 +9,7 @@ use clap::{Parser, ValueEnum};
use rand::prelude::*; use rand::prelude::*;
use candle::{DType, Result, Tensor, D}; use candle::{DType, Result, Tensor, D};
use candle_nn::{loss, ops, Conv2d, Linear, Module, Optimizer, VarBuilder, VarMap}; use candle_nn::{loss, ops, Conv2d, Linear, Module, ModuleT, Optimizer, VarBuilder, VarMap};
const IMAGE_DIM: usize = 784; const IMAGE_DIM: usize = 784;
const LABELS: usize = 10; const LABELS: usize = 10;
@ -95,7 +95,7 @@ impl ConvNet {
.flatten_from(1)? .flatten_from(1)?
.apply(&self.fc1)? .apply(&self.fc1)?
.relu()?; .relu()?;
self.dropout.forward(&xs, train)?.apply(&self.fc2) self.dropout.forward_t(&xs, train)?.apply(&self.fc2)
} }
} }

View File

@ -5,7 +5,7 @@ extern crate intel_mkl_src;
extern crate accelerate_src; extern crate accelerate_src;
use candle::{DType, IndexOp, D}; use candle::{DType, IndexOp, D};
use candle_nn::{Module, VarBuilder}; use candle_nn::{ModuleT, VarBuilder};
use candle_transformers::models::vgg::{Models, Vgg}; use candle_transformers::models::vgg::{Models, Vgg};
use clap::{Parser, ValueEnum}; use clap::{Parser, ValueEnum};
@ -53,7 +53,7 @@ pub fn main() -> anyhow::Result<()> {
Which::Vgg16 => Vgg::new(vb, Models::Vgg16)?, Which::Vgg16 => Vgg::new(vb, Models::Vgg16)?,
Which::Vgg19 => Vgg::new(vb, Models::Vgg19)?, Which::Vgg19 => Vgg::new(vb, Models::Vgg19)?,
}; };
let logits = model.forward(&image)?; let logits = model.forward_t(&image, /*train=*/ false)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)? let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)? .i(0)?

View File

@ -36,3 +36,38 @@ impl<'a> Func<'a> {
Self { f: Arc::new(f) } Self { f: Arc::new(f) }
} }
} }
/// A layer defined by a simple closure.
#[derive(Clone)]
pub struct FuncT<'a> {
#[allow(clippy::type_complexity)]
f: Arc<dyn 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync>,
}
impl<'a> std::fmt::Debug for FuncT<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "func")
}
}
pub fn func_t<'a, F>(f: F) -> FuncT<'a>
where
F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync,
{
FuncT { f: Arc::new(f) }
}
impl<'a> super::ModuleT for FuncT<'a> {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
(*self.f)(xs, train)
}
}
impl<'a> FuncT<'a> {
pub fn new<F>(f: F) -> Self
where
F: 'a + Fn(&Tensor, bool) -> Result<Tensor> + Send + Sync,
{
Self { f: Arc::new(f) }
}
}

View File

@ -22,7 +22,7 @@ pub use conv::{
Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose2d, ConvTranspose2dConfig, Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose2d, ConvTranspose2dConfig,
}; };
pub use embedding::{embedding, Embedding}; pub use embedding::{embedding, Embedding};
pub use func::{func, Func}; pub use func::{func, func_t, Func, FuncT};
pub use group_norm::{group_norm, GroupNorm}; pub use group_norm::{group_norm, GroupNorm};
pub use init::Init; pub use init::Init;
pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm}; pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm};
@ -34,4 +34,4 @@ pub use sequential::{seq, Sequential};
pub use var_builder::VarBuilder; pub use var_builder::VarBuilder;
pub use var_map::VarMap; pub use var_map::VarMap;
pub use candle::Module; pub use candle::{Module, ModuleT};

View File

@ -84,6 +84,12 @@ impl Dropout {
} }
} }
impl candle::ModuleT for Dropout {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
self.forward(xs, train)
}
}
struct SoftmaxLastDim; struct SoftmaxLastDim;
impl candle::CustomOp1 for SoftmaxLastDim { impl candle::CustomOp1 for SoftmaxLastDim {

View File

@ -2,8 +2,8 @@
//! //!
//! See Very Deep Convolutional Networks for Large-Scale Image Recognition //! See Very Deep Convolutional Networks for Large-Scale Image Recognition
//! <https://arxiv.org/abs/1409.1556> //! <https://arxiv.org/abs/1409.1556>
use candle::{Module, Result, Tensor}; use candle::{ModuleT, Result, Tensor};
use candle_nn::{Func, VarBuilder}; use candle_nn::{FuncT, VarBuilder};
// Enum representing the different VGG models // Enum representing the different VGG models
pub enum Models { pub enum Models {
@ -15,7 +15,7 @@ pub enum Models {
// Struct representing a VGG model // Struct representing a VGG model
#[derive(Debug)] #[derive(Debug)]
pub struct Vgg<'a> { pub struct Vgg<'a> {
blocks: Vec<Func<'a>>, blocks: Vec<FuncT<'a>>,
} }
// Struct representing the configuration for the pre-logit layer // Struct representing the configuration for the pre-logit layer
@ -39,11 +39,11 @@ impl<'a> Vgg<'a> {
} }
// Implementation of the forward pass for the VGG model // Implementation of the forward pass for the VGG model
impl Module for Vgg<'_> { impl ModuleT for Vgg<'_> {
fn forward(&self, xs: &Tensor) -> Result<Tensor> { fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
let mut xs = xs.unsqueeze(0)?; let mut xs = xs.unsqueeze(0)?;
for block in self.blocks.iter() { for block in self.blocks.iter() {
xs = xs.apply(block)?; xs = xs.apply_t(block, train)?;
} }
Ok(xs) Ok(xs)
} }
@ -51,7 +51,7 @@ impl Module for Vgg<'_> {
// Function to create a conv2d block // Function to create a conv2d block
// The block is composed of two conv2d layers followed by a max pool layer // The block is composed of two conv2d layers followed by a max pool layer
fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<Func<'static>> { fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<FuncT<'static>> {
let layers = convs let layers = convs
.iter() .iter()
.enumerate() .enumerate()
@ -70,7 +70,7 @@ fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<Func<
}) })
.collect::<Result<Vec<_>>>()?; .collect::<Result<Vec<_>>>()?;
Ok(Func::new(move |xs| { Ok(FuncT::new(move |xs, _train| {
let mut xs = xs.clone(); let mut xs = xs.clone();
for layer in layers.iter() { for layer in layers.iter() {
xs = xs.apply(layer)?.relu()? xs = xs.apply(layer)?.relu()?
@ -87,7 +87,7 @@ fn fully_connected(
pre_logit_1: PreLogitConfig, pre_logit_1: PreLogitConfig,
pre_logit_2: PreLogitConfig, pre_logit_2: PreLogitConfig,
vb: VarBuilder, vb: VarBuilder,
) -> Result<Func> { ) -> Result<FuncT> {
let lin = get_weights_and_biases( let lin = get_weights_and_biases(
&vb.pp("pre_logits.fc1"), &vb.pp("pre_logits.fc1"),
pre_logit_1.in_dim, pre_logit_1.in_dim,
@ -100,12 +100,15 @@ fn fully_connected(
pre_logit_2.target_in, pre_logit_2.target_in,
pre_logit_2.target_out, pre_logit_2.target_out,
)?; )?;
Ok(Func::new(move |xs| { let dropout1 = candle_nn::Dropout::new(0.5);
let dropout2 = candle_nn::Dropout::new(0.5);
let dropout3 = candle_nn::Dropout::new(0.5);
Ok(FuncT::new(move |xs, train| {
let xs = xs.reshape((1, pre_logit_1.target_out))?; let xs = xs.reshape((1, pre_logit_1.target_out))?;
let xs = candle_nn::ops::dropout(&xs, 0.5)?.apply(&lin)?.relu()?; let xs = xs.apply_t(&dropout1, train)?.apply(&lin)?.relu()?;
let xs = candle_nn::ops::dropout(&xs, 0.5)?.apply(&lin2)?.relu()?; let xs = xs.apply_t(&dropout2, train)?.apply(&lin2)?.relu()?;
let lin3 = candle_nn::linear(4096, num_classes, vb.pp("head.fc"))?; let lin3 = candle_nn::linear(4096, num_classes, vb.pp("head.fc"))?;
let xs = candle_nn::ops::dropout(&xs, 0.5)?.apply(&lin3)?.relu()?; let xs = xs.apply_t(&dropout3, train)?.apply(&lin3)?.relu()?;
Ok(xs) Ok(xs)
})) }))
} }
@ -130,7 +133,7 @@ fn get_weights_and_biases(
Ok(candle_nn::Linear::new(ws, Some(bs))) Ok(candle_nn::Linear::new(ws, Some(bs)))
} }
fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<Func>> { fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000; let num_classes = 1000;
let blocks = vec![ let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
@ -156,7 +159,7 @@ fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<Func>> {
Ok(blocks) Ok(blocks)
} }
fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<Func>> { fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000; let num_classes = 1000;
let blocks = vec![ let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
@ -203,7 +206,7 @@ fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<Func>> {
Ok(blocks) Ok(blocks)
} }
fn vgg19_blocks(vb: VarBuilder) -> Result<Vec<Func>> { fn vgg19_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000; let num_classes = 1000;
let blocks = vec![ let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?, conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,