mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Re-organize the wasm examples (#231)
* Move the whisper example. * More renaming. * Add llama2 as a new wasm example. * Live generation. * More of the llama wasm example. * Formatting.
This commit is contained in:
353
candle-wasm-examples/llama2-c/src/worker.rs
Normal file
353
candle-wasm-examples/llama2-c/src/worker.rs
Normal file
@ -0,0 +1,353 @@
|
||||
use crate::model::{Cache, Config, Llama};
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use candle::{DType, Device, IndexOp, Result, Shape, Tensor, D};
|
||||
use candle_nn::VarBuilder;
|
||||
use rand::{distributions::Distribution, SeedableRng};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use wasm_bindgen::prelude::*;
|
||||
use yew_agent::{HandlerId, Public, WorkerLink};
|
||||
|
||||
#[wasm_bindgen]
|
||||
extern "C" {
|
||||
// Use `js_namespace` here to bind `console.log(..)` instead of just
|
||||
// `log(..)`
|
||||
#[wasm_bindgen(js_namespace = console)]
|
||||
pub fn log(s: &str);
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! console_log {
|
||||
// Note that this is using the `log` function imported above during
|
||||
// `bare_bones`
|
||||
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
|
||||
}
|
||||
|
||||
// Communication to the worker happens through bincode, the model weights and configs are fetched
|
||||
// on the main thread and transfered via the following structure.
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct ModelData {
|
||||
pub tokenizer: Vec<u8>,
|
||||
pub model: Vec<u8>,
|
||||
}
|
||||
|
||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||
let mut buf = [0u8; 4];
|
||||
r.read_exact(&mut buf)?;
|
||||
Ok(i32::from_le_bytes(buf))
|
||||
}
|
||||
|
||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||
r: &mut R,
|
||||
shape: S,
|
||||
dev: &Device,
|
||||
) -> Result<Tensor> {
|
||||
let shape = shape.into();
|
||||
let mut data_t = vec![0f32; shape.elem_count()];
|
||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||
Ok(tensor)
|
||||
}
|
||||
|
||||
struct Tokenizer {
|
||||
tokens: Vec<String>,
|
||||
}
|
||||
|
||||
impl Tokenizer {
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config) -> Result<Self> {
|
||||
let mut tokens = Vec::with_capacity(c.vocab_size);
|
||||
for _token_index in 0..c.vocab_size {
|
||||
let token_len = read_i32(r)?;
|
||||
let mut token = vec![0u8; token_len as usize];
|
||||
r.read_exact(&mut token)?;
|
||||
tokens.push(String::from_utf8_lossy(&token).into_owned())
|
||||
}
|
||||
Ok(Self { tokens })
|
||||
}
|
||||
}
|
||||
|
||||
struct Model {
|
||||
cache: Cache,
|
||||
config: Config,
|
||||
llama: Llama,
|
||||
tokenizer: Tokenizer,
|
||||
}
|
||||
|
||||
pub struct LogitsProcessor {
|
||||
rng: rand::rngs::StdRng,
|
||||
temperature: Option<f64>,
|
||||
}
|
||||
|
||||
impl LogitsProcessor {
|
||||
pub fn new(seed: u64, temperature: Option<f64>) -> Self {
|
||||
Self {
|
||||
rng: rand::rngs::StdRng::seed_from_u64(seed),
|
||||
temperature,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn sample(&mut self, logits: &Tensor) -> Result<u32> {
|
||||
let logits = logits.to_dtype(DType::F32)?;
|
||||
let next_token = if let Some(temperature) = self.temperature {
|
||||
let prs = (&logits / temperature)?.softmax(D::Minus1)?;
|
||||
let prs: Vec<f32> = prs.to_vec1()?;
|
||||
let distr =
|
||||
rand::distributions::WeightedIndex::new(prs).map_err(candle::Error::wrap)?;
|
||||
distr.sample(&mut self.rng) as u32
|
||||
} else {
|
||||
let logits_v: Vec<f32> = logits.to_vec1()?;
|
||||
logits_v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.max_by(|(_, u), (_, v)| u.total_cmp(v))
|
||||
.map(|(i, _)| i as u32)
|
||||
.unwrap()
|
||||
};
|
||||
Ok(next_token)
|
||||
}
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn run(&self, link: &WorkerLink<Worker>, id: HandlerId) -> Result<()> {
|
||||
let dev = Device::Cpu;
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, None);
|
||||
let mut index_pos = 0;
|
||||
let mut tokens = vec![1u32];
|
||||
|
||||
for index in 0..self.config.seq_len - 10 {
|
||||
let context_size = if self.cache.use_kv_cache && index > 0 {
|
||||
1
|
||||
} else {
|
||||
tokens.len()
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &dev)?.unsqueeze(0)?;
|
||||
let logits = self.llama.forward(&input, index_pos)?;
|
||||
let logits = logits.squeeze(0)?;
|
||||
index_pos += ctxt.len();
|
||||
|
||||
let next_token = logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
let token = self.tokenizer.tokens[next_token as usize].clone();
|
||||
link.respond(id, Ok(WorkerOutput::Generated(token)));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||
let dim = read_i32(r)? as usize;
|
||||
let hidden_dim = read_i32(r)? as usize;
|
||||
let n_layers = read_i32(r)? as usize;
|
||||
let n_heads = read_i32(r)? as usize;
|
||||
let n_kv_heads = read_i32(r)? as usize;
|
||||
let vocab_size = read_i32(r)? as usize;
|
||||
let seq_len = read_i32(r)? as usize;
|
||||
Ok(Self {
|
||||
dim,
|
||||
hidden_dim,
|
||||
n_layers,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
vocab_size,
|
||||
seq_len,
|
||||
norm_eps: 1e-5,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn head_size(&self) -> usize {
|
||||
self.dim / self.n_heads
|
||||
}
|
||||
}
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
token_embedding_table: Tensor, // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
||||
rms_ffn_weight: Tensor, // (layer, dim)
|
||||
// weights for matmuls
|
||||
wq: Tensor, // (layer, dim, dim)
|
||||
wk: Tensor, // (layer, dim, dim)
|
||||
wv: Tensor, // (layer, dim, dim)
|
||||
wo: Tensor, // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
w1: Tensor, // (layer, hidden_dim, dim)
|
||||
w2: Tensor, // (layer, dim, hidden_dim)
|
||||
w3: Tensor, // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
rms_final_weight: Tensor, // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||
}
|
||||
|
||||
impl TransformerWeights {
|
||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
||||
let head_size = c.head_size();
|
||||
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||
Ok(Self {
|
||||
token_embedding_table,
|
||||
rms_att_weight,
|
||||
wq,
|
||||
wk,
|
||||
wv,
|
||||
wo,
|
||||
rms_ffn_weight,
|
||||
w1,
|
||||
w2,
|
||||
w3,
|
||||
rms_final_weight,
|
||||
freq_cis_real,
|
||||
freq_cis_imag,
|
||||
})
|
||||
}
|
||||
|
||||
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
||||
let mut ws = std::collections::HashMap::new();
|
||||
let mut insert = |name: &str, t: Tensor| {
|
||||
ws.insert(name.to_string(), t);
|
||||
};
|
||||
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
||||
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
||||
insert(
|
||||
"model.embed_tokens.weight",
|
||||
self.token_embedding_table.clone(),
|
||||
);
|
||||
insert("lm_head.weight", self.token_embedding_table.clone());
|
||||
insert("model.norm.weight", self.rms_final_weight.clone());
|
||||
for layer in 0..cfg.n_layers {
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
||||
self.wq.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
||||
self.wk.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
||||
self.wv.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
||||
self.wo.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
||||
self.w1.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
||||
self.w2.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
||||
self.w3.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.input_layernorm.weight"),
|
||||
self.rms_att_weight.i(layer)?,
|
||||
);
|
||||
ws.insert(
|
||||
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
||||
self.rms_ffn_weight.i(layer)?,
|
||||
);
|
||||
}
|
||||
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
||||
Ok(vb)
|
||||
}
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn load(md: ModelData) -> Result<Self> {
|
||||
let dev = Device::Cpu;
|
||||
let mut model = std::io::Cursor::new(md.model);
|
||||
let config = Config::from_reader(&mut model)?;
|
||||
let weights = TransformerWeights::from_reader(&mut model, &config, &dev)?;
|
||||
let vb = weights.var_builder(&config, &dev)?;
|
||||
let cache = Cache::new(true, &config, vb.pp("rot"))?;
|
||||
let llama = Llama::load(vb, &cache, &config)?;
|
||||
let mut tokenizer = std::io::Cursor::new(md.tokenizer);
|
||||
let tokenizer = Tokenizer::from_reader(&mut tokenizer, &config)?;
|
||||
Ok(Self {
|
||||
cache,
|
||||
config,
|
||||
llama,
|
||||
tokenizer,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Worker {
|
||||
link: WorkerLink<Self>,
|
||||
model: Option<Model>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerInput {
|
||||
ModelData(ModelData),
|
||||
Run,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerOutput {
|
||||
Generated(String),
|
||||
GenerationDone(std::result::Result<(), String>),
|
||||
WeightsLoaded,
|
||||
}
|
||||
|
||||
impl yew_agent::Worker for Worker {
|
||||
type Input = WorkerInput;
|
||||
type Message = ();
|
||||
type Output = std::result::Result<WorkerOutput, String>;
|
||||
type Reach = Public<Self>;
|
||||
|
||||
fn create(link: WorkerLink<Self>) -> Self {
|
||||
Self { link, model: None }
|
||||
}
|
||||
|
||||
fn update(&mut self, _msg: Self::Message) {
|
||||
// no messaging
|
||||
}
|
||||
|
||||
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
|
||||
let output = match msg {
|
||||
WorkerInput::ModelData(md) => match Model::load(md) {
|
||||
Ok(model) => {
|
||||
self.model = Some(model);
|
||||
Ok(WorkerOutput::WeightsLoaded)
|
||||
}
|
||||
Err(err) => Err(format!("model creation error {err:?}")),
|
||||
},
|
||||
WorkerInput::Run => match &self.model {
|
||||
None => Err("model has not been set yet".to_string()),
|
||||
Some(model) => {
|
||||
let result = model.run(&self.link, id).map_err(|e| e.to_string());
|
||||
Ok(WorkerOutput::GenerationDone(result))
|
||||
}
|
||||
},
|
||||
};
|
||||
self.link.respond(id, output);
|
||||
}
|
||||
|
||||
fn name_of_resource() -> &'static str {
|
||||
"worker.js"
|
||||
}
|
||||
|
||||
fn resource_path_is_relative() -> bool {
|
||||
true
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user