Re-organize the wasm examples (#231)

* Move the whisper example.

* More renaming.

* Add llama2 as a new wasm example.

* Live generation.

* More of the llama wasm example.

* Formatting.
This commit is contained in:
Laurent Mazare
2023-07-24 12:36:02 +01:00
committed by GitHub
parent 550a13a547
commit 5a26cba733
22 changed files with 988 additions and 18 deletions

View File

@ -0,0 +1,238 @@
use crate::console_log;
use crate::worker::{ModelData, Segment, Worker, WorkerInput, WorkerOutput};
use js_sys::Date;
use wasm_bindgen::prelude::*;
use wasm_bindgen_futures::JsFuture;
use yew::{html, Component, Context, Html};
use yew_agent::{Bridge, Bridged};
const SAMPLE_NAMES: [&str; 6] = [
"jfk.wav", "a13.wav", "gb0.wav", "gb1.wav", "hp0.wav", "mm0.wav",
];
async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> {
use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response};
let window = web_sys::window().ok_or("window")?;
let mut opts = RequestInit::new();
let opts = opts
.method("GET")
.mode(RequestMode::Cors)
.cache(RequestCache::NoCache);
let request = Request::new_with_str_and_init(url, opts)?;
let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?;
// `resp_value` is a `Response` object.
assert!(resp_value.is_instance_of::<Response>());
let resp: Response = resp_value.dyn_into()?;
let data = JsFuture::from(resp.blob()?).await?;
let blob = web_sys::Blob::from(data);
let array_buffer = JsFuture::from(blob.array_buffer()).await?;
let data = js_sys::Uint8Array::new(&array_buffer).to_vec();
Ok(data)
}
pub enum Msg {
Run(usize),
UpdateStatus(String),
SetDecoder(ModelData),
WorkerInMsg(WorkerInput),
WorkerOutMsg(Result<WorkerOutput, String>),
}
pub struct CurrentDecode {
start_time: Option<f64>,
}
pub struct App {
status: String,
segments: Vec<Segment>,
current_decode: Option<CurrentDecode>,
worker: Box<dyn Bridge<Worker>>,
}
async fn model_data_load() -> Result<ModelData, JsValue> {
let tokenizer = fetch_url("tokenizer.en.json").await?;
let mel_filters = fetch_url("mel_filters.safetensors").await?;
let weights = fetch_url("tiny.en.safetensors").await?;
console_log!("{}", weights.len());
Ok(ModelData {
tokenizer,
mel_filters,
weights,
})
}
fn performance_now() -> Option<f64> {
let window = web_sys::window()?;
let performance = window.performance()?;
Some(performance.now() / 1000.)
}
impl Component for App {
type Message = Msg;
type Properties = ();
fn create(ctx: &Context<Self>) -> Self {
let status = "loading weights".to_string();
let cb = {
let link = ctx.link().clone();
move |e| link.send_message(Self::Message::WorkerOutMsg(e))
};
let worker = Worker::bridge(std::rc::Rc::new(cb));
Self {
status,
segments: vec![],
current_decode: None,
worker,
}
}
fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) {
if first_render {
ctx.link().send_future(async {
match model_data_load().await {
Err(err) => {
let status = format!("{err:?}");
Msg::UpdateStatus(status)
}
Ok(model_data) => Msg::SetDecoder(model_data),
}
});
}
}
fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool {
match msg {
Msg::SetDecoder(md) => {
self.status = "weights loaded succesfully!".to_string();
console_log!("loaded weights");
self.worker.send(WorkerInput::ModelData(md));
true
}
Msg::Run(sample_index) => {
let sample = SAMPLE_NAMES[sample_index];
if self.current_decode.is_some() {
self.status = "already decoding some sample at the moment".to_string()
} else {
let start_time = performance_now();
self.current_decode = Some(CurrentDecode { start_time });
self.status = format!("decoding {sample}");
self.segments.clear();
ctx.link().send_future(async move {
match fetch_url(sample).await {
Err(err) => {
let output = Err(format!("decoding error: {err:?}"));
// Mimic a worker output to so as to release current_decode
Msg::WorkerOutMsg(output)
}
Ok(wav_bytes) => {
Msg::WorkerInMsg(WorkerInput::DecodeTask { wav_bytes })
}
}
})
}
//
true
}
Msg::WorkerOutMsg(output) => {
let dt = self.current_decode.as_ref().and_then(|current_decode| {
current_decode.start_time.and_then(|start_time| {
performance_now().map(|stop_time| stop_time - start_time)
})
});
self.current_decode = None;
match output {
Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(),
Ok(WorkerOutput::Decoded(segments)) => {
self.status = match dt {
None => "decoding succeeded!".to_string(),
Some(dt) => format!("decoding succeeded in {:.2}s", dt),
};
self.segments = segments;
}
Err(err) => {
self.status = format!("decoding error {err:?}");
}
}
true
}
Msg::WorkerInMsg(inp) => {
self.worker.send(inp);
true
}
Msg::UpdateStatus(status) => {
self.status = status;
true
}
}
}
fn view(&self, ctx: &Context<Self>) -> Html {
html! {
<div>
<table>
<thead>
<tr>
<th>{"Sample"}</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
{
SAMPLE_NAMES.iter().enumerate().map(|(i, name)| { html! {
<tr>
<th>{name}</th>
<th><audio controls=true src={format!("./{name}")}></audio></th>
<th><button class="button" onclick={ctx.link().callback(move |_| Msg::Run(i))}> { "run" }</button></th>
</tr>
}
}).collect::<Html>()
}
</tbody>
</table>
<h2>
{&self.status}
</h2>
{
if self.current_decode.is_some() {
html! { <progress id="progress-bar" aria-label="decoding…"></progress> }
} else { html!{
<blockquote>
<p>
{
self.segments.iter().map(|segment| { html! {
<>
<i>
{
format!("{:.2}s-{:.2}s: (avg-logprob: {:.4}, no-speech-prob: {:.4})",
segment.start,
segment.start + segment.duration,
segment.dr.avg_logprob,
segment.dr.no_speech_prob,
)
}
</i>
<br/ >
{&segment.dr.text}
<br/ >
</>
} }).collect::<Html>()
}
</p>
</blockquote>
}
}
}
// Display the current date and time the page was rendered
<p class="footer">
{ "Rendered: " }
{ String::from(Date::new_0().to_string()) }
</p>
</div>
}
}
}

View File

@ -0,0 +1,217 @@
// Audio processing code, adapted from whisper.cpp
// https://github.com/ggerganov/whisper.cpp
use super::worker;
pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
impl Float for f32 {}
impl Float for f64 {}
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
fn fft<T: Float>(inp: &[T]) -> Vec<T> {
let n = inp.len();
let zero = T::zero();
if n == 1 {
return vec![inp[0], zero];
}
if n % 2 == 1 {
return dft(inp);
}
let mut out = vec![zero; n * 2];
let mut even = vec![];
even.reserve(n / 2);
let mut odd = vec![];
odd.reserve(n / 2);
for (i, &inp) in inp.iter().enumerate() {
if i % 2 == 0 {
even.push(inp)
} else {
odd.push(inp);
}
}
let even_fft = fft(&even);
let odd_fft = fft(&odd);
let two_pi = T::PI() + T::PI();
let n_t = T::from(n).unwrap();
for k in 0..n / 2 {
let k_t = T::from(k).unwrap();
let theta = two_pi * k_t / n_t;
let re = theta.cos();
let im = -theta.sin();
let re_odd = odd_fft[2 * k];
let im_odd = odd_fft[2 * k + 1];
out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
}
out
}
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
fn dft<T: Float>(inp: &[T]) -> Vec<T> {
let zero = T::zero();
let n = inp.len();
let two_pi = T::PI() + T::PI();
let mut out = Vec::new();
out.reserve(2 * n);
let n_t = T::from(n).unwrap();
for k in 0..n {
let k_t = T::from(k).unwrap();
let mut re = zero;
let mut im = zero;
for (j, &inp) in inp.iter().enumerate() {
let j_t = T::from(j).unwrap();
let angle = two_pi * k_t * j_t / n_t;
re += inp * angle.cos();
im -= inp * angle.sin();
}
out.push(re);
out.push(im);
}
out
}
#[allow(clippy::too_many_arguments)]
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
fn log_mel_spectrogram_w<T: Float>(
ith: usize,
hann: &[T],
samples: &[T],
filters: &[T],
fft_size: usize,
fft_step: usize,
speed_up: bool,
n_len: usize,
n_mel: usize,
n_threads: usize,
) -> Vec<T> {
let n_fft = if speed_up {
1 + fft_size / 4
} else {
1 + fft_size / 2
};
let zero = T::zero();
let half = T::from(0.5).unwrap();
let mut fft_in = vec![zero; fft_size];
let mut mel = vec![zero; n_len * n_mel];
for i in (ith..n_len).step_by(n_threads) {
let offset = i * fft_step;
// apply Hanning window
for j in 0..fft_size {
fft_in[j] = if offset + j < samples.len() {
hann[j] * samples[offset + j]
} else {
zero
}
}
// FFT -> mag^2
let mut fft_out: Vec<T> = fft(&fft_in);
for j in 0..fft_size {
fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
}
for j in 1..fft_size / 2 {
let v = fft_out[fft_size - j];
fft_out[j] += v;
}
if speed_up {
// scale down in the frequency domain results in a speed up in the time domain
for j in 0..n_fft {
fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
}
}
// mel spectrogram
for j in 0..n_mel {
let mut sum = zero;
for k in 0..n_fft {
sum += fft_out[k] * filters[j * n_fft + k];
}
mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
}
}
mel
}
fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
samples: &[T],
filters: &[T],
fft_size: usize,
fft_step: usize,
n_mel: usize,
speed_up: bool,
) -> Vec<T> {
let zero = T::zero();
let two_pi = T::PI() + T::PI();
let half = T::from(0.5).unwrap();
let one = T::from(1.0).unwrap();
let four = T::from(4.0).unwrap();
let fft_size_t = T::from(fft_size).unwrap();
let hann: Vec<T> = (0..fft_size)
.map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
.collect();
let n_len = samples.len() / fft_step;
// pad audio with at least one extra chunk of zeros
let pad = 100 * worker::CHUNK_LENGTH / 2;
let n_len = if n_len % pad != 0 {
(n_len / pad + 1) * pad
} else {
n_len
};
let n_len = n_len + pad;
let samples = {
let mut samples_padded = samples.to_vec();
let to_add = n_len * fft_step - samples.len();
samples_padded.extend(std::iter::repeat(zero).take(to_add));
samples_padded
};
// Use a single thread for now.
let mut mel = log_mel_spectrogram_w(
0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
);
let mmax = mel
.iter()
.max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
.copied()
.unwrap_or(zero)
- T::from(8).unwrap();
for m in mel.iter_mut() {
let v = T::max(*m, mmax);
*m = v / four + one
}
mel
}
pub fn pcm_to_mel<T: Float + std::fmt::Display>(
samples: &[T],
filters: &[T],
) -> anyhow::Result<Vec<T>> {
let mel = log_mel_spectrogram_(
samples,
filters,
worker::N_FFT,
worker::HOP_LENGTH,
worker::N_MELS,
false,
);
Ok(mel)
}

View File

@ -0,0 +1,4 @@
fn main() {
wasm_logger::init(wasm_logger::Config::new(log::Level::Trace));
yew::Renderer::<candle_wasm_example_whisper::App>::new().render();
}

View File

@ -0,0 +1,4 @@
use yew_agent::PublicWorker;
fn main() {
candle_wasm_example_whisper::Worker::register();
}

View File

@ -0,0 +1,31 @@
#![allow(dead_code)]
pub const WITH_TIMER: bool = true;
struct Timer {
label: &'static str,
}
impl Timer {
fn new(label: &'static str) -> Self {
if WITH_TIMER {
web_sys::console::time_with_label(label);
}
Self { label }
}
}
impl Drop for Timer {
fn drop(&mut self) {
if WITH_TIMER {
web_sys::console::time_end_with_label(self.label)
}
}
}
mod app;
mod audio;
mod model;
mod worker;
pub use app::App;
pub use worker::Worker;

View File

@ -0,0 +1,421 @@
#![allow(dead_code)]
// We use anyhow rather than candle errors as it provides better support for getting the backtrace
// back when using RUST_LIB_BACKTRACE=1.
use anyhow::Result;
use candle::{Device, Tensor};
use candle_nn::{Conv1d, Conv1dConfig, Embedding, LayerNorm, VarBuilder};
use serde::Deserialize;
// The names in comments correspond to the original implementation:
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
pub num_mel_bins: usize, // n_mels
pub max_source_positions: usize, // n_audio_ctx
pub d_model: usize, // n_audio_state
pub encoder_attention_heads: usize, // n_audio_head
pub encoder_layers: usize, // n_audio_layer
pub vocab_size: usize, // n_vocab
pub max_target_positions: usize, // n_text_ctx
// pub n_text_state: usize,
pub decoder_attention_heads: usize, // n_text_head
pub decoder_layers: usize, // n_text_layer
}
impl Config {
pub fn tiny_en() -> Self {
Self {
num_mel_bins: 80,
vocab_size: 51864,
max_source_positions: 1500,
d_model: 384,
encoder_attention_heads: 6,
encoder_layers: 4,
max_target_positions: 448,
// n_text_state: 384,
decoder_attention_heads: 6,
decoder_layers: 4,
}
}
}
// The struct below is duplicated from candle_nn::Linear so that it's easier to add some wasm
// specific monitoring.
#[derive(Debug)]
struct Linear {
weight: Tensor,
bias: Option<Tensor>,
}
impl Linear {
fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
Self { weight, bias }
}
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let _timer = crate::Timer::new("Linear::forward");
let w = match x.dims() {
&[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
_ => self.weight.t()?,
};
let x = {
let _timer = crate::Timer::new("Linear::matmul");
x.matmul(&w)?
};
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
Ok(Embedding::new(embeddings, hidden_size))
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
let bias = vb.get(size2, "bias")?;
Ok(Linear::new(weight, Some(bias)))
}
fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn conv1d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
let bias = vb.get(out_channels, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}
fn conv1d_no_bias(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
Ok(Conv1d::new(weight, None, config))
}
struct Dropout {
pr: f64,
}
impl Dropout {
fn new(pr: f64) -> Self {
Self { pr }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
// TODO
Ok(x.clone())
}
}
fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
let weight = vb.get(size, "weight")?;
let bias = vb.get(size, "bias")?;
Ok(LayerNorm::new(weight, bias, 1e-5))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
struct MultiHeadAttention {
query: Linear,
key: Linear,
value: Linear,
out: Linear,
n_head: usize,
}
impl MultiHeadAttention {
fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
let query = linear(n_state, n_state, vb.pp("q_proj"))?;
let value = linear(n_state, n_state, vb.pp("v_proj"))?;
let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
let out = linear(n_state, n_state, vb.pp("out_proj"))?;
Ok(Self {
query,
key,
value,
out,
n_head,
})
}
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
let _timer = crate::Timer::new("MultiHeadAttention::forward");
let q = self.query.forward(x)?;
let k = self.key.forward(xa.unwrap_or(x))?;
let v = self.value.forward(xa.unwrap_or(x))?;
let wv = self.qkv_attention(&q, &k, &v, mask)?;
let out = self.out.forward(&wv)?;
Ok(out)
}
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
let (n_batch, n_ctx, n_state) = x.dims3()?;
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
Ok(x.reshape(target_dims)?.transpose(1, 2)?)
}
fn qkv_attention(
&self,
q: &Tensor,
k: &Tensor,
v: &Tensor,
mask: Option<&Tensor>,
) -> Result<Tensor> {
let (_, n_ctx, n_state) = q.dims3()?;
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
let q = {
let _timer = crate::Timer::new("q::reshape");
(self.reshape_head(q)? * scale)?
};
let k = {
let _timer = crate::Timer::new("k::reshape");
(self.reshape_head(k)?.transpose(2, 3)? * scale)?
};
let v = {
let _timer = crate::Timer::new("v::reshape-contiguous");
self.reshape_head(v)?.contiguous()?
};
let mut qk = {
let _timer = crate::Timer::new("qk::matmul");
q.matmul(&k)?
};
if let Some(mask) = mask {
let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
qk = qk.broadcast_add(&mask)?
}
let w = {
let _timer = crate::Timer::new("qk::softmax");
qk.softmax(candle::D::Minus1)?
};
let wv = {
let _timer = crate::Timer::new("wv::matmul");
w.matmul(&v)?.transpose(1, 2)?.flatten_from(2)?
};
Ok(wv)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
struct ResidualAttentionBlock {
attn: MultiHeadAttention,
attn_ln: LayerNorm,
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
mlp_linear1: Linear,
mlp_linear2: Linear,
mlp_ln: LayerNorm,
}
impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
let cross_attn = if ca {
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
Some((cross_attn, cross_attn_ln))
} else {
None
};
let n_mlp = n_state * 4;
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
Ok(Self {
attn,
attn_ln,
cross_attn,
mlp_linear1,
mlp_linear2,
mlp_ln,
})
}
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
let _timer = crate::Timer::new("ResidualAttentionBlock::forward");
let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?;
let mut x = (x + attn)?;
if let Some((attn, ln)) = &self.cross_attn {
x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?;
}
let mlp = self.mlp_linear2.forward(
&self
.mlp_linear1
.forward(&self.mlp_ln.forward(&x)?)?
.gelu()?,
)?;
Ok((x + mlp)?)
}
}
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
let max_timescale = 10000f32;
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
let inv_timescales: Vec<_> = (0..channels / 2)
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
.collect();
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
.to_dtype(candle::DType::F32)?
.unsqueeze(1)?;
let sh = (length, channels / 2);
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
Ok(sincos)
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
pub struct AudioEncoder {
conv1: Conv1d,
conv2: Conv1d,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln_post: LayerNorm,
}
impl AudioEncoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let n_state = cfg.d_model;
let n_head = cfg.encoder_attention_heads;
let n_ctx = cfg.max_source_positions;
let cfg1 = Conv1dConfig {
padding: 1,
stride: 1,
};
let cfg2 = Conv1dConfig {
padding: 1,
stride: 2,
};
let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
let blocks = (0..cfg.encoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
Ok(Self {
conv1,
conv2,
positional_embedding,
blocks,
ln_post,
})
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _timer = crate::Timer::new("AudioEncoder::forward");
let x = {
let _timer = crate::Timer::new("conv1::forward");
self.conv1.forward(x)?.gelu()?
};
let x = {
let _timer = crate::Timer::new("conv2::forward");
self.conv2.forward(&x)?.gelu()?
};
let x = x.transpose(1, 2)?;
let (_bsize, seq_len, _hidden) = x.dims3()?;
let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
let mut x = x.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter() {
x = block.forward(&x, None, None)?
}
let x = self.ln_post.forward(&x)?;
Ok(x)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
pub struct TextDecoder {
token_embedding: Embedding,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln: LayerNorm,
mask: Tensor,
}
impl TextDecoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let _timer = crate::Timer::new("TextDecoder::forward");
let n_state = cfg.d_model;
let n_head = cfg.decoder_attention_heads;
let n_ctx = cfg.max_target_positions;
let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
let blocks = (0..cfg.decoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
Ok(Self {
token_embedding,
positional_embedding,
blocks,
ln,
mask,
})
}
pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
let x_dims = x.dims();
let last = x_dims[x_dims.len() - 1];
let token_embedding = self.token_embedding.forward(x)?;
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter() {
x = block.forward(&x, Some(xa), Some(&self.mask))?;
}
let x = self.ln.forward(&x)?;
let w = self
.token_embedding
.embeddings()
.broadcast_left(x_dims[0])?;
let logits = x.matmul(&w.t()?)?;
Ok(logits)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
pub struct Whisper {
pub encoder: AudioEncoder,
pub decoder: TextDecoder,
pub config: Config,
}
impl Whisper {
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
Ok(Self {
encoder,
decoder,
config,
})
}
pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
let enc = self.encoder.forward(mel)?;
let dec = self.decoder.forward(tokens, &enc)?;
Ok(dec)
}
}

View File

@ -0,0 +1,345 @@
use crate::model::{Config, Whisper};
use anyhow::Error as E;
use candle::{safetensors::Load, DType, Device, Tensor};
use candle_nn::VarBuilder;
use rand::{distributions::Distribution, rngs::StdRng, SeedableRng};
use serde::{Deserialize, Serialize};
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;
use yew_agent::{HandlerId, Public, WorkerLink};
#[wasm_bindgen]
extern "C" {
// Use `js_namespace` here to bind `console.log(..)` instead of just
// `log(..)`
#[wasm_bindgen(js_namespace = console)]
pub fn log(s: &str);
}
#[macro_export]
macro_rules! console_log {
// Note that this is using the `log` function imported above during
// `bare_bones`
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
}
pub const DTYPE: DType = DType::F32;
// Audio parameters.
pub const SAMPLE_RATE: usize = 16000;
pub const N_FFT: usize = 400;
pub const N_MELS: usize = 80;
pub const HOP_LENGTH: usize = 160;
pub const CHUNK_LENGTH: usize = 30;
pub const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
pub const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
pub const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
pub const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
pub const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
pub const NO_SPEECH_THRESHOLD: f64 = 0.6;
pub const LOGPROB_THRESHOLD: f64 = -1.0;
pub const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
pub const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
// Tokenizer dependent bits.
pub const SOT_TOKEN: u32 = 50257;
pub const EOT_TOKEN: u32 = 50256;
pub const NO_SPEECH_TOKEN: u32 = 50361;
pub const NO_TIMESTAMP_TOKEN: u32 = 50362;
// From the _get_suppress_tokens function + 50362 (no timestamp)
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/decoding.py#L605
pub const SUPPRESS_TOKENS: [u32; 91] = [
1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357,
366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782,
1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959,
10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992,
19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549,
47282, 49146, 50257, 50357, 50358, 50359, 50360, 50361, 50362,
];
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DecodingResult {
pub tokens: Vec<u32>,
pub text: String,
pub avg_logprob: f64,
pub no_speech_prob: f64,
temperature: f64,
compression_ratio: f64,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Segment {
pub start: f64,
pub duration: f64,
pub dr: DecodingResult,
}
pub struct Decoder {
model: Whisper,
mel_filters: Vec<f32>,
tokenizer: Tokenizer,
suppress_tokens: Tensor,
}
impl Decoder {
fn new(
model: Whisper,
tokenizer: Tokenizer,
mel_filters: Vec<f32>,
device: &Device,
) -> anyhow::Result<Self> {
let suppress_tokens: Vec<f32> = (0..model.config.vocab_size as u32)
.map(|i| {
if SUPPRESS_TOKENS.contains(&i) {
f32::NEG_INFINITY
} else {
0f32
}
})
.collect();
let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
Ok(Self {
model,
mel_filters,
tokenizer,
suppress_tokens,
})
}
fn decode(&self, mel: &Tensor, t: f64, rng: &mut StdRng) -> anyhow::Result<DecodingResult> {
let model = &self.model;
let audio_features = model.encoder.forward(mel)?;
console_log!("audio features: {:?}", audio_features.dims());
let sample_len = model.config.max_target_positions / 2;
let mut sum_logprob = 0f64;
let mut no_speech_prob = f64::NAN;
let mut tokens = vec![SOT_TOKEN];
for i in 0..sample_len {
let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?;
// The model expects a batch dim but this inference loop does not handle
// it so we add it at this point.
let tokens_t = tokens_t.unsqueeze(0)?;
let logits = model.decoder.forward(&tokens_t, &audio_features)?;
let logits = logits.squeeze(0)?;
// Extract the no speech probability on the first iteration by looking at the first
// token logits and the probability for the according token.
if i == 0 {
no_speech_prob = logits
.get(0)?
.softmax(0)?
.get(NO_SPEECH_TOKEN as usize)?
.to_scalar::<f32>()? as f64;
}
let (seq_len, _) = logits.dims2()?;
let logits = logits
.get(seq_len - 1)?
.broadcast_add(&self.suppress_tokens)?;
let next_token = if t > 0f64 {
let prs = (&logits / t)?.softmax(0)?;
let logits_v: Vec<f32> = prs.to_vec1()?;
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
distr.sample(rng) as u32
} else {
let logits_v: Vec<f32> = logits.to_vec1()?;
logits_v
.iter()
.enumerate()
.max_by(|(_, u), (_, v)| u.total_cmp(v))
.map(|(i, _)| i as u32)
.unwrap()
};
tokens.push(next_token);
let prob = logits
.softmax(candle::D::Minus1)?
.get(next_token as usize)?
.to_scalar::<f32>()? as f64;
if next_token == EOT_TOKEN || tokens.len() > model.config.max_target_positions {
break;
}
sum_logprob += prob.ln();
}
let text = self
.tokenizer
.decode(tokens.clone(), true)
.map_err(E::msg)?;
let avg_logprob = sum_logprob / tokens.len() as f64;
Ok(DecodingResult {
tokens,
text,
avg_logprob,
no_speech_prob,
temperature: t,
compression_ratio: f64::NAN,
})
}
fn decode_with_fallback(
&self,
segment: &Tensor,
rng: &mut StdRng,
) -> anyhow::Result<DecodingResult> {
for (i, &t) in TEMPERATURES.iter().enumerate() {
let dr: Result<DecodingResult, _> = self.decode(segment, t, rng);
if i == TEMPERATURES.len() - 1 {
return dr;
}
// On errors, we try again with a different temperature.
match dr {
Ok(dr) => {
let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
|| dr.avg_logprob < LOGPROB_THRESHOLD;
if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
return Ok(dr);
}
}
Err(err) => {
console_log!("Error running at {t}: {err}")
}
}
}
unreachable!()
}
fn run(&self, mel: &Tensor) -> anyhow::Result<Vec<Segment>> {
let mut rng = StdRng::seed_from_u64(299792458);
let (_, _, content_frames) = mel.dims3()?;
let mut seek = 0;
let mut segments = vec![];
while seek < content_frames {
let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let segment_size = usize::min(content_frames - seek, N_FRAMES);
let mel_segment = mel.narrow(2, seek, segment_size)?;
let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let dr = self.decode_with_fallback(&mel_segment, &mut rng)?;
seek += segment_size;
if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
console_log!("no speech detected, skipping {seek} {dr:?}");
continue;
}
let segment = Segment {
start: time_offset,
duration: segment_duration,
dr,
};
console_log!("{seek}: {segment:?}");
segments.push(segment)
}
Ok(segments)
}
fn load(md: ModelData) -> anyhow::Result<Self> {
let device = Device::Cpu;
let tokenizer = Tokenizer::from_bytes(&md.tokenizer).map_err(anyhow::Error::msg)?;
let mel_filters = candle::safetensors::SafeTensors::deserialize(&md.mel_filters)?;
let mel_filters = mel_filters.tensor("mel_80")?.load(&device)?;
console_log!("loaded mel filters {:?}", mel_filters.shape());
let mel_filters = mel_filters.flatten_all()?.to_vec1::<f32>()?;
let weights = candle::safetensors::SafeTensors::deserialize(&md.weights)?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
let config = Config::tiny_en();
let whisper = Whisper::load(&vb, config)?;
console_log!("done loading model");
let decoder = Self::new(whisper, tokenizer, mel_filters, &device)?;
Ok(decoder)
}
fn convert_and_run(&self, wav_input: &[u8]) -> anyhow::Result<Vec<Segment>> {
let device = Device::Cpu;
let mut wav_input = std::io::Cursor::new(wav_input);
let (header, data) = wav::read(&mut wav_input)?;
console_log!("loaded wav data: {header:?}");
if header.sampling_rate != SAMPLE_RATE as u32 {
anyhow::bail!("wav file must have a {SAMPLE_RATE} sampling rate");
}
let data = data.as_sixteen().expect("expected 16 bit wav file");
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
.iter()
.map(|v| *v as f32 / 32768.)
.collect();
console_log!("pcm data loaded {}", pcm_data.len());
let mel = crate::audio::pcm_to_mel(&pcm_data, &self.mel_filters)?;
let mel_len = mel.len();
let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?;
console_log!("loaded mel: {:?}", mel.dims());
let segments = self.run(&mel)?;
Ok(segments)
}
}
// Communication to the worker happens through bincode, the model weights and configs are fetched
// on the main thread and transfered via the following structure.
#[derive(Serialize, Deserialize)]
pub struct ModelData {
pub tokenizer: Vec<u8>,
pub mel_filters: Vec<u8>,
pub weights: Vec<u8>,
}
pub struct Worker {
link: WorkerLink<Self>,
decoder: Option<Decoder>,
}
#[derive(Serialize, Deserialize)]
pub enum WorkerInput {
ModelData(ModelData),
DecodeTask { wav_bytes: Vec<u8> },
}
#[derive(Serialize, Deserialize)]
pub enum WorkerOutput {
Decoded(Vec<Segment>),
WeightsLoaded,
}
impl yew_agent::Worker for Worker {
type Input = WorkerInput;
type Message = ();
type Output = Result<WorkerOutput, String>;
type Reach = Public<Self>;
fn create(link: WorkerLink<Self>) -> Self {
Self {
link,
decoder: None,
}
}
fn update(&mut self, _msg: Self::Message) {
// no messaging
}
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
let output = match msg {
WorkerInput::ModelData(md) => match Decoder::load(md) {
Ok(decoder) => {
self.decoder = Some(decoder);
Ok(WorkerOutput::WeightsLoaded)
}
Err(err) => Err(format!("model creation error {err:?}")),
},
WorkerInput::DecodeTask { wav_bytes } => match &self.decoder {
None => Err("model has not been set".to_string()),
Some(decoder) => decoder
.convert_and_run(&wav_bytes)
.map(WorkerOutput::Decoded)
.map_err(|e| e.to_string()),
},
};
self.link.respond(id, output);
}
fn name_of_resource() -> &'static str {
"worker.js"
}
fn resource_path_is_relative() -> bool {
true
}
}