MMLU evaluation for Phi. (#1474)

* MMLU evaluation for Phi.

* Improve the evaluation.
This commit is contained in:
Laurent Mazare
2023-12-23 15:28:36 +01:00
committed by GitHub
parent ba1fae590e
commit 5b35fd0fcf
2 changed files with 105 additions and 13 deletions

View File

@ -145,7 +145,10 @@ struct Args {
verbose_prompt: bool,
#[arg(long)]
prompt: String,
prompt: Option<String>,
#[arg(long)]
mmlu_dir: Option<String>,
/// The temperature used to generate samples.
#[arg(long)]
@ -314,17 +317,105 @@ fn main() -> Result<()> {
};
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
match (args.prompt, args.mmlu_dir) {
(None, None) | (Some(_), Some(_)) => {
anyhow::bail!("exactly one of --prompt and --mmlu-dir must be specified")
}
(Some(prompt), None) => {
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
);
pipeline.run(&prompt, args.sample_len)?;
}
(None, Some(mmlu_dir)) => mmlu(model, tokenizer, &device, mmlu_dir)?,
}
Ok(())
}
fn mmlu<P: AsRef<std::path::Path>>(
mut model: Model,
tokenizer: Tokenizer,
device: &Device,
mmlu_dir: P,
) -> anyhow::Result<()> {
for dir_entry in mmlu_dir.as_ref().read_dir()?.flatten() {
let dir_entry = dir_entry.path();
let theme = match dir_entry.file_stem().and_then(|v| v.to_str()) {
None => "".to_string(),
Some(v) => match v.strip_suffix("_test") {
None => v.replace('_', " "),
Some(v) => v.replace('_', " "),
},
};
if dir_entry.extension().as_ref().and_then(|v| v.to_str()) != Some("csv") {
continue;
}
println!("reading {dir_entry:?}");
let dir_entry = std::fs::File::open(dir_entry)?;
let mut reader = csv::ReaderBuilder::new()
.has_headers(false)
.from_reader(dir_entry);
let token_a = tokenizer.token_to_id("A").unwrap();
let token_b = tokenizer.token_to_id("B").unwrap();
let token_c = tokenizer.token_to_id("C").unwrap();
let token_d = tokenizer.token_to_id("D").unwrap();
for row in reader.records() {
let row = match row {
Err(_) => continue,
Ok(row) => row,
};
if row.len() < 5 {
continue;
}
let question = row.get(0).unwrap();
let answer_a = row.get(1).unwrap();
let answer_b = row.get(2).unwrap();
let answer_c = row.get(3).unwrap();
let answer_d = row.get(4).unwrap();
let answer = row.get(5).unwrap();
let prompt = format!(
"{} {theme}.\n{question}\nA. {answer_a}\nB. {answer_b}\nC. {answer_c}\nD. {answer_d}\nAnswer:\n",
"The following are multiple choice questions (with answers) about"
);
let tokens = tokenizer.encode(prompt.as_str(), true).map_err(E::msg)?;
let tokens = tokens.get_ids().to_vec();
let input = Tensor::new(tokens, device)?.unsqueeze(0)?;
let logits = match &mut model {
Model::MixFormer(m) => {
m.clear_kv_cache();
m.forward(&input)?
}
Model::Quantized(m) => {
m.clear_kv_cache();
m.forward(&input)?
}
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let logits_v: Vec<f32> = logits.to_vec1()?;
let pr_a = logits_v[token_a as usize];
let pr_b = logits_v[token_b as usize];
let pr_c = logits_v[token_c as usize];
let pr_d = logits_v[token_d as usize];
let model_answer = if pr_a > pr_b && pr_a > pr_c && pr_a > pr_d {
"A"
} else if pr_b > pr_c && pr_b > pr_d {
"B"
} else if pr_c > pr_d {
"C"
} else {
"D"
};
println!("{prompt}\n -> {model_answer} vs {answer}");
}
}
Ok(())
}