mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Adding Granite 7b Instruct model example (#2487)
* Adding Granite 7b Instruct model example * Minor refactoring to make it a little more idiomatic * Clippy fixes. * * Adding a README with some information about supported Granite models * Changing the default prompt to accomodate better the Language modality of the Granite 7b Instruct model --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
This commit is contained in:
458
candle-transformers/src/models/granite.rs
Normal file
458
candle-transformers/src/models/granite.rs
Normal file
@ -0,0 +1,458 @@
|
||||
use super::with_tracing::{linear_no_bias as linear, Linear, RmsNorm};
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{embedding, Embedding, Module, VarBuilder};
|
||||
use std::{collections::HashMap, f32::consts::PI};
|
||||
|
||||
pub const DEFAULT_MAX_SEQ_LEN: usize = 4096;
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize, Default)]
|
||||
pub enum GraniteRopeType {
|
||||
#[serde(rename = "granite")]
|
||||
Granite,
|
||||
#[default]
|
||||
#[serde(rename = "default")]
|
||||
Default,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize, Default)]
|
||||
pub struct GraniteRopeConfig {
|
||||
pub factor: f32,
|
||||
pub low_freq_factor: f32,
|
||||
pub high_freq_factor: f32,
|
||||
pub original_max_position_embeddings: usize,
|
||||
pub rope_type: GraniteRopeType,
|
||||
}
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
#[serde(untagged)]
|
||||
pub enum GraniteEosToks {
|
||||
Single(u32),
|
||||
Multiple(Vec<u32>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, serde::Deserialize)]
|
||||
pub struct GraniteConfig {
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub vocab_size: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: Option<usize>,
|
||||
pub rms_norm_eps: f64,
|
||||
#[serde(default = "default_rope")]
|
||||
pub rope_theta: f32,
|
||||
pub bos_token_id: Option<u32>,
|
||||
pub eos_token_id: Option<GraniteEosToks>,
|
||||
pub rope_scaling: Option<GraniteRopeConfig>,
|
||||
pub max_position_embeddings: usize,
|
||||
}
|
||||
|
||||
impl GraniteConfig {
|
||||
pub fn num_key_value_heads(&self) -> usize {
|
||||
self.num_key_value_heads.unwrap_or(self.num_attention_heads)
|
||||
}
|
||||
}
|
||||
|
||||
fn default_rope() -> f32 {
|
||||
10_000.0
|
||||
}
|
||||
|
||||
impl GraniteConfig {
|
||||
pub fn into_config(self, use_flash_attn: bool) -> Config {
|
||||
Config {
|
||||
hidden_size: self.hidden_size,
|
||||
intermediate_size: self.intermediate_size,
|
||||
vocab_size: self.vocab_size,
|
||||
num_hidden_layers: self.num_hidden_layers,
|
||||
num_attention_heads: self.num_attention_heads,
|
||||
num_key_value_heads: self.num_key_value_heads(),
|
||||
rms_norm_eps: self.rms_norm_eps,
|
||||
rope_theta: self.rope_theta,
|
||||
use_flash_attn,
|
||||
bos_token_id: self.bos_token_id,
|
||||
eos_token_id: self.eos_token_id,
|
||||
rope_scaling: self.rope_scaling,
|
||||
max_position_embeddings: self.max_position_embeddings,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Config {
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub vocab_size: usize,
|
||||
pub num_hidden_layers: usize,
|
||||
pub num_attention_heads: usize,
|
||||
pub num_key_value_heads: usize,
|
||||
pub use_flash_attn: bool,
|
||||
pub rms_norm_eps: f64,
|
||||
pub rope_theta: f32,
|
||||
pub bos_token_id: Option<u32>,
|
||||
pub eos_token_id: Option<GraniteEosToks>,
|
||||
pub rope_scaling: Option<GraniteRopeConfig>,
|
||||
pub max_position_embeddings: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Cache {
|
||||
masks: HashMap<usize, Tensor>,
|
||||
pub use_kv_cache: bool,
|
||||
kvs: Vec<Option<(Tensor, Tensor)>>,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
fn calculate_default_inv_freq(cfg: &Config) -> Vec<f32> {
|
||||
let head_dim = cfg.hidden_size / cfg.num_attention_heads;
|
||||
(0..head_dim)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / head_dim as f32))
|
||||
.collect()
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result<Self> {
|
||||
// precompute freqs_cis
|
||||
let theta = match &config.rope_scaling {
|
||||
None
|
||||
| Some(GraniteRopeConfig {
|
||||
rope_type: GraniteRopeType::Default,
|
||||
..
|
||||
}) => calculate_default_inv_freq(config),
|
||||
Some(rope_scaling) => {
|
||||
let low_freq_wavelen = rope_scaling.original_max_position_embeddings as f32
|
||||
/ rope_scaling.low_freq_factor;
|
||||
let high_freq_wavelen = rope_scaling.original_max_position_embeddings as f32
|
||||
/ rope_scaling.high_freq_factor;
|
||||
|
||||
calculate_default_inv_freq(config)
|
||||
.into_iter()
|
||||
.map(|freq| {
|
||||
let wavelen = 2. * PI / freq;
|
||||
if wavelen < high_freq_wavelen {
|
||||
freq
|
||||
} else if wavelen > low_freq_wavelen {
|
||||
freq / rope_scaling.factor
|
||||
} else {
|
||||
let smooth = (rope_scaling.original_max_position_embeddings as f32
|
||||
/ wavelen
|
||||
- rope_scaling.low_freq_factor)
|
||||
/ (rope_scaling.high_freq_factor - rope_scaling.low_freq_factor);
|
||||
(1. - smooth) * freq / rope_scaling.factor + smooth * freq
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
};
|
||||
|
||||
let theta = Tensor::new(theta, device)?;
|
||||
|
||||
let idx_theta = Tensor::arange(0, config.max_position_embeddings as u32, device)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((config.max_position_embeddings, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
let cos = idx_theta.cos()?.to_dtype(dtype)?;
|
||||
let sin = idx_theta.sin()?.to_dtype(dtype)?;
|
||||
Ok(Self {
|
||||
masks: HashMap::new(),
|
||||
use_kv_cache,
|
||||
kvs: vec![None; config.num_hidden_layers],
|
||||
device: device.clone(),
|
||||
cos,
|
||||
sin,
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&mut self, t: usize) -> Result<Tensor> {
|
||||
if let Some(mask) = self.masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
self.masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct CausalSelfAttention {
|
||||
q_proj: Linear,
|
||||
k_proj: Linear,
|
||||
v_proj: Linear,
|
||||
o_proj: Linear,
|
||||
num_attention_heads: usize,
|
||||
num_key_value_heads: usize,
|
||||
head_dim: usize,
|
||||
use_flash_attn: bool,
|
||||
span: tracing::Span,
|
||||
span_rot: tracing::Span,
|
||||
max_position_embeddings: usize,
|
||||
}
|
||||
|
||||
#[cfg(feature = "flash-attn")]
|
||||
fn flash_attn(
|
||||
q: &Tensor,
|
||||
k: &Tensor,
|
||||
v: &Tensor,
|
||||
softmax_scale: f32,
|
||||
causal: bool,
|
||||
) -> Result<Tensor> {
|
||||
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "flash-attn"))]
|
||||
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
|
||||
unimplemented!("compile with '--features flash-attn'")
|
||||
}
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize, cache: &Cache) -> Result<Tensor> {
|
||||
let _enter = self.span_rot.enter();
|
||||
let (_b_sz, _, seq_len, _hidden_size) = x.dims4()?;
|
||||
let cos = cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
candle_nn::rotary_emb::rope(x, &cos, &sin)
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
x: &Tensor,
|
||||
index_pos: usize,
|
||||
block_idx: usize,
|
||||
cache: &mut Cache,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let (b_sz, seq_len, hidden_size) = x.dims3()?;
|
||||
let q = self.q_proj.forward(x)?;
|
||||
let k = self.k_proj.forward(x)?;
|
||||
let v = self.v_proj.forward(x)?;
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.contiguous()?;
|
||||
let mut v = v
|
||||
.reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
|
||||
.transpose(1, 2)?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos, cache)?;
|
||||
let mut k = self.apply_rotary_emb(&k, index_pos, cache)?;
|
||||
|
||||
if cache.use_kv_cache {
|
||||
if let Some((cache_k, cache_v)) = &cache.kvs[block_idx] {
|
||||
k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
|
||||
v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
|
||||
let k_seq_len = k.dims()[1];
|
||||
if k_seq_len > self.max_position_embeddings {
|
||||
k = k
|
||||
.narrow(
|
||||
D::Minus1,
|
||||
k_seq_len - self.max_position_embeddings,
|
||||
self.max_position_embeddings,
|
||||
)?
|
||||
.contiguous()?
|
||||
}
|
||||
let v_seq_len = v.dims()[1];
|
||||
if v_seq_len > 2 * self.max_position_embeddings {
|
||||
v = v
|
||||
.narrow(
|
||||
D::Minus1,
|
||||
v_seq_len - self.max_position_embeddings,
|
||||
self.max_position_embeddings,
|
||||
)?
|
||||
.contiguous()?
|
||||
}
|
||||
}
|
||||
cache.kvs[block_idx] = Some((k.clone(), v.clone()))
|
||||
}
|
||||
|
||||
let k = self.repeat_kv(k)?;
|
||||
let v = self.repeat_kv(v)?;
|
||||
|
||||
let y = if self.use_flash_attn {
|
||||
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
|
||||
let q = q.transpose(1, 2)?;
|
||||
let k = k.transpose(1, 2)?;
|
||||
let v = v.transpose(1, 2)?;
|
||||
let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
|
||||
flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)?
|
||||
} else {
|
||||
let in_dtype = q.dtype();
|
||||
let q = q.to_dtype(DType::F32)?;
|
||||
let k = k.to_dtype(DType::F32)?;
|
||||
let v = v.to_dtype(DType::F32)?;
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let att = if seq_len == 1 {
|
||||
att
|
||||
} else {
|
||||
let mask = cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||
masked_fill(&att, &mask, f32::NEG_INFINITY)?
|
||||
};
|
||||
let att = candle_nn::ops::softmax(&att, D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?
|
||||
};
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
crate::utils::repeat_kv(x, self.num_attention_heads / self.num_key_value_heads)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "attn");
|
||||
let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
|
||||
let size_in = cfg.hidden_size;
|
||||
let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads;
|
||||
let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads;
|
||||
let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
|
||||
let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
|
||||
let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
|
||||
let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
|
||||
Ok(Self {
|
||||
q_proj,
|
||||
k_proj,
|
||||
v_proj,
|
||||
o_proj,
|
||||
num_attention_heads: cfg.num_attention_heads,
|
||||
num_key_value_heads: cfg.num_key_value_heads,
|
||||
head_dim: cfg.hidden_size / cfg.num_attention_heads,
|
||||
use_flash_attn: cfg.use_flash_attn,
|
||||
span,
|
||||
span_rot,
|
||||
max_position_embeddings: cfg.max_position_embeddings,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||
let m = mask.where_cond(&on_true, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Mlp {
|
||||
c_fc1: Linear,
|
||||
c_fc2: Linear,
|
||||
c_proj: Linear,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "mlp");
|
||||
let h_size = cfg.hidden_size;
|
||||
let i_size = cfg.intermediate_size;
|
||||
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
|
||||
let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
|
||||
let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
|
||||
Ok(Self {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Block {
|
||||
rms_1: RmsNorm,
|
||||
attn: CausalSelfAttention,
|
||||
rms_2: RmsNorm,
|
||||
mlp: Mlp,
|
||||
span: tracing::Span,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn forward(
|
||||
&self,
|
||||
x: &Tensor,
|
||||
index_pos: usize,
|
||||
block_idx: usize,
|
||||
cache: &mut Cache,
|
||||
) -> Result<Tensor> {
|
||||
let _enter = self.span.enter();
|
||||
let residual = x;
|
||||
let x = self.rms_1.forward(x)?;
|
||||
let x = (self.attn.forward(&x, index_pos, block_idx, cache)? + residual)?;
|
||||
let residual = &x;
|
||||
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
|
||||
Ok(x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let span = tracing::span!(tracing::Level::TRACE, "block");
|
||||
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cfg)?;
|
||||
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
|
||||
let rms_1 = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||
let rms_2 = RmsNorm::new(
|
||||
cfg.hidden_size,
|
||||
cfg.rms_norm_eps,
|
||||
vb.pp("post_attention_layernorm"),
|
||||
)?;
|
||||
Ok(Self {
|
||||
rms_1,
|
||||
attn,
|
||||
rms_2,
|
||||
mlp,
|
||||
span,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Granite {
|
||||
wte: Embedding,
|
||||
blocks: Vec<Block>,
|
||||
ln_f: RmsNorm,
|
||||
lm_head: Linear,
|
||||
}
|
||||
|
||||
impl Granite {
|
||||
pub fn forward(&self, x: &Tensor, index_pos: usize, cache: &mut Cache) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = x.dims2()?;
|
||||
let mut x = self.wte.forward(x)?;
|
||||
for (block_idx, block) in self.blocks.iter().enumerate() {
|
||||
x = block.forward(&x, index_pos, block_idx, cache)?;
|
||||
}
|
||||
let x = self.ln_f.forward(&x)?;
|
||||
let x = x.i((.., seq_len - 1, ..))?.contiguous()?;
|
||||
let logits = self.lm_head.forward(&x)?;
|
||||
logits.to_dtype(DType::F32)
|
||||
}
|
||||
|
||||
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let wte = embedding(cfg.vocab_size, cfg.hidden_size, vb.pp("model.embed_tokens"))?;
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let ln_f = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?;
|
||||
let blocks: Vec<_> = (0..cfg.num_hidden_layers)
|
||||
.map(|i| Block::load(vb.pp(format!("model.layers.{i}")), cfg).unwrap())
|
||||
.collect();
|
||||
|
||||
Ok(Self {
|
||||
wte,
|
||||
blocks,
|
||||
ln_f,
|
||||
lm_head,
|
||||
})
|
||||
}
|
||||
}
|
@ -24,6 +24,7 @@ pub mod flux;
|
||||
pub mod gemma;
|
||||
pub mod gemma2;
|
||||
pub mod glm4;
|
||||
pub mod granite;
|
||||
pub mod hiera;
|
||||
pub mod jina_bert;
|
||||
pub mod llama;
|
||||
|
Reference in New Issue
Block a user