Support more modes in the encodec example. (#1777)

* Support more modes in the encodec example.

* Remove the old encodec model from the musicgen bits.
This commit is contained in:
Laurent Mazare
2024-02-28 09:22:33 +01:00
committed by GitHub
parent 56e44aabe3
commit 60ee5cfd4d
7 changed files with 159 additions and 641 deletions

View File

@ -95,3 +95,9 @@ required-features = ["candle-datasets"]
[[example]]
name = "llama2-c"
required-features = ["candle-datasets"]
[[example]]
name = "encodec"
required-features = ["symphonia"]

View File

@ -0,0 +1,20 @@
# candle-endocec
[EnCodec](https://huggingface.co/facebook/encodec_24khz) is a high-quality audio
compression model using an encoder/decoder architecture with residual vector
quantization.
## Running one example
```bash
cargo run --example encodec --features symphonia --release -- code-to-audio \
candle-examples/examples/encodec/jfk-codes.safetensors \
jfk.wav
```
This decodes the EnCodec tokens stored in `jfk-codes.safetensors` and generates
an output wav file containing the audio data. Instead of `code-to-audio` one
can use:
- `audio-to-audio in.mp3 out.wav`: encodes the input audio file then decodes it to a wav file.
- `audio-to-code in.mp3 out.safetensors`: generates a safetensors file
containing EnCodec tokens for the input audio file.

View File

@ -5,15 +5,85 @@ extern crate intel_mkl_src;
extern crate accelerate_src;
use anyhow::Result;
use candle::{DType, IndexOp};
use candle::{DType, IndexOp, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::models::encodec::{Config, Model};
use clap::Parser;
use clap::{Parser, ValueEnum};
use hf_hub::api::sync::Api;
fn conv<T>(samples: &mut Vec<f32>, data: std::borrow::Cow<symphonia::core::audio::AudioBuffer<T>>)
where
T: symphonia::core::sample::Sample,
f32: symphonia::core::conv::FromSample<T>,
{
use symphonia::core::audio::Signal;
use symphonia::core::conv::FromSample;
samples.extend(data.chan(0).iter().map(|v| f32::from_sample(*v)))
}
fn pcm_decode<P: AsRef<std::path::Path>>(path: P) -> anyhow::Result<(Vec<f32>, u32)> {
use symphonia::core::audio::{AudioBufferRef, Signal};
let src = std::fs::File::open(path)?;
let mss = symphonia::core::io::MediaSourceStream::new(Box::new(src), Default::default());
let hint = symphonia::core::probe::Hint::new();
let meta_opts: symphonia::core::meta::MetadataOptions = Default::default();
let fmt_opts: symphonia::core::formats::FormatOptions = Default::default();
let probed = symphonia::default::get_probe().format(&hint, mss, &fmt_opts, &meta_opts)?;
let mut format = probed.format;
let track = format
.tracks()
.iter()
.find(|t| t.codec_params.codec != symphonia::core::codecs::CODEC_TYPE_NULL)
.expect("no supported audio tracks");
let mut decoder = symphonia::default::get_codecs()
.make(&track.codec_params, &Default::default())
.expect("unsupported codec");
let track_id = track.id;
let sample_rate = track.codec_params.sample_rate.unwrap_or(0);
let mut pcm_data = Vec::new();
while let Ok(packet) = format.next_packet() {
while !format.metadata().is_latest() {
format.metadata().pop();
}
if packet.track_id() != track_id {
continue;
}
match decoder.decode(&packet)? {
AudioBufferRef::F32(buf) => pcm_data.extend(buf.chan(0)),
AudioBufferRef::U8(data) => conv(&mut pcm_data, data),
AudioBufferRef::U16(data) => conv(&mut pcm_data, data),
AudioBufferRef::U24(data) => conv(&mut pcm_data, data),
AudioBufferRef::U32(data) => conv(&mut pcm_data, data),
AudioBufferRef::S8(data) => conv(&mut pcm_data, data),
AudioBufferRef::S16(data) => conv(&mut pcm_data, data),
AudioBufferRef::S24(data) => conv(&mut pcm_data, data),
AudioBufferRef::S32(data) => conv(&mut pcm_data, data),
AudioBufferRef::F64(data) => conv(&mut pcm_data, data),
}
}
Ok((pcm_data, sample_rate))
}
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Action {
AudioToAudio,
AudioToCode,
CodeToAudio,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// The action to be performed, specifies the format for the input and output data.
action: Action,
/// The input file, either an audio file or some encodec tokens stored as safetensors.
in_file: String,
/// The output file, either a wave audio file or some encodec tokens stored as safetensors.
out_file: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
@ -21,18 +91,6 @@ struct Args {
/// The model weight file, in safetensor format.
#[arg(long)]
model: Option<String>,
/// Input file as a safetensors containing the encodec tokens.
#[arg(long)]
code_file: String,
/// Output file that will be generated in wav format.
#[arg(long)]
out: String,
/// Do another step of encoding the PCM data and and decoding the resulting codes.
#[arg(long)]
roundtrip: bool,
}
fn main() -> Result<()> {
@ -48,25 +106,36 @@ fn main() -> Result<()> {
let config = Config::default();
let model = Model::new(&config, vb)?;
let codes = candle::safetensors::load(args.code_file, &device)?;
let codes = match args.action {
Action::CodeToAudio => {
let codes = candle::safetensors::load(args.in_file, &device)?;
let codes = codes.get("codes").expect("no codes in input file").i(0)?;
println!("codes shape: {:?}", codes.shape());
let pcm = model.decode(&codes)?;
println!("pcm shape: {:?}", pcm.shape());
let pcm = if args.roundtrip {
let codes = model.encode(&pcm)?;
println!("second step codes shape: {:?}", pcm.shape());
let pcm = model.decode(&codes)?;
println!("second step pcm shape: {:?}", pcm.shape());
pcm
} else {
pcm
codes
}
Action::AudioToCode | Action::AudioToAudio => {
let (pcm, sample_rate) = pcm_decode(args.in_file)?;
if sample_rate != 24_000 {
println!("WARNING: encodec uses a 24khz sample rate, input uses {sample_rate}")
}
let pcm_len = pcm.len();
let pcm = Tensor::from_vec(pcm, (1, 1, pcm_len), &device)?;
println!("input pcm shape: {:?}", pcm.shape());
model.encode(&pcm)?
}
};
println!("codes shape: {:?}", codes.shape());
match args.action {
Action::AudioToCode => {
codes.save_safetensors("codes", &args.out_file)?;
}
Action::AudioToAudio | Action::CodeToAudio => {
let pcm = model.decode(&codes)?;
println!("output pcm shape: {:?}", pcm.shape());
let pcm = pcm.i(0)?.i(0)?.to_vec1::<f32>()?;
let mut output = std::fs::File::create(&args.out)?;
let mut output = std::fs::File::create(&args.out_file)?;
candle_examples::wav::write_pcm_as_wav(&mut output, &pcm, 24_000)?;
}
}
Ok(())
}

View File

@ -1,580 +0,0 @@
use crate::nn::conv1d_weight_norm;
use candle::{DType, IndexOp, Module, Result, Tensor};
use candle_nn::{conv1d, Conv1d, Conv1dConfig, VarBuilder};
// Encodec Model
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
#[derive(Debug, Clone, PartialEq)]
enum NormType {
WeightNorm,
TimeGroupNorm,
None,
}
#[derive(Debug, Clone, PartialEq)]
pub struct Config {
target_bandwidths: Vec<f64>,
sampling_rate: usize,
audio_channels: usize,
normalize: bool,
chunk_length_s: Option<usize>,
overlap: Option<usize>,
hidden_size: usize,
num_filters: usize,
num_residual_layers: usize,
upsampling_ratios: Vec<usize>,
norm_type: NormType,
kernel_size: usize,
last_kernel_size: usize,
residual_kernel_size: usize,
dilation_growth_rate: usize,
use_causal_conv: bool,
pad_mode: &'static str,
compress: usize,
num_lstm_layers: usize,
trim_right_ratio: f64,
codebook_size: usize,
codebook_dim: Option<usize>,
use_conv_shortcut: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
target_bandwidths: vec![1.5, 3.0, 6.0, 12.0, 24.0],
sampling_rate: 24_000,
audio_channels: 1,
normalize: false,
chunk_length_s: None,
overlap: None,
hidden_size: 128,
num_filters: 32,
num_residual_layers: 1,
upsampling_ratios: vec![8, 5, 4, 2],
norm_type: NormType::WeightNorm,
kernel_size: 7,
last_kernel_size: 7,
residual_kernel_size: 3,
dilation_growth_rate: 2,
use_causal_conv: true,
pad_mode: "reflect",
compress: 2,
num_lstm_layers: 2,
trim_right_ratio: 1.0,
codebook_size: 1024,
codebook_dim: None,
use_conv_shortcut: true,
}
}
}
impl Config {
// https://huggingface.co/facebook/musicgen-small/blob/495da4ad086b3416a27c6187f9239f9fd96f3962/config.json#L6
pub fn musicgen_small() -> Self {
Self {
audio_channels: 1,
chunk_length_s: None,
codebook_dim: Some(128),
codebook_size: 2048,
compress: 2,
dilation_growth_rate: 2,
hidden_size: 128,
kernel_size: 7,
last_kernel_size: 7,
norm_type: NormType::WeightNorm,
normalize: false,
num_filters: 64,
num_lstm_layers: 2,
num_residual_layers: 1,
overlap: None,
pad_mode: "reflect",
residual_kernel_size: 3,
sampling_rate: 32_000,
target_bandwidths: vec![2.2],
trim_right_ratio: 1.0,
upsampling_ratios: vec![8, 5, 4, 4],
use_causal_conv: false,
use_conv_shortcut: false,
}
}
fn codebook_dim(&self) -> usize {
self.codebook_dim.unwrap_or(self.codebook_size)
}
fn frame_rate(&self) -> usize {
let hop_length: usize = self.upsampling_ratios.iter().product();
(self.sampling_rate + hop_length - 1) / hop_length
}
fn num_quantizers(&self) -> usize {
let num = 1000f64
* self
.target_bandwidths
.last()
.expect("empty target_bandwidths");
(num as usize) / (self.frame_rate() * 10)
}
}
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L340
#[derive(Debug)]
struct EncodecEuclideanCodebook {
inited: Tensor,
cluster_size: Tensor,
embed: Tensor,
embed_avg: Tensor,
}
impl EncodecEuclideanCodebook {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let inited = vb.get(1, "inited")?;
let cluster_size = vb.get(cfg.codebook_size, "cluster_size")?;
let e_shape = (cfg.codebook_size, cfg.codebook_dim());
let embed = vb.get(e_shape, "embed")?;
let embed_avg = vb.get(e_shape, "embed_avg")?;
Ok(Self {
inited,
cluster_size,
embed,
embed_avg,
})
}
fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.embed.embedding(embed_ind)?;
Ok(quantize)
}
}
#[derive(Debug)]
struct EncodecVectorQuantization {
codebook: EncodecEuclideanCodebook,
}
impl EncodecVectorQuantization {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let codebook = EncodecEuclideanCodebook::load(vb.pp("codebook"), cfg)?;
Ok(Self { codebook })
}
fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.codebook.decode(embed_ind)?;
let quantize = quantize.transpose(1, 2)?;
Ok(quantize)
}
}
#[derive(Debug)]
struct EncodecResidualVectorQuantizer {
layers: Vec<EncodecVectorQuantization>,
}
impl EncodecResidualVectorQuantizer {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let vb = &vb.pp("layers");
let layers = (0..cfg.num_quantizers())
.map(|i| EncodecVectorQuantization::load(vb.pp(&i.to_string()), cfg))
.collect::<Result<Vec<_>>>()?;
Ok(Self { layers })
}
fn decode(&self, codes: &Tensor) -> Result<Tensor> {
let mut quantized_out = Tensor::zeros((), DType::F32, codes.device())?;
if codes.dim(0)? != self.layers.len() {
candle::bail!(
"codes shape {:?} does not match the number of quantization layers {}",
codes.shape(),
self.layers.len()
)
}
for (i, layer) in self.layers.iter().enumerate() {
let quantized = layer.decode(&codes.i(i)?)?;
quantized_out = quantized.broadcast_add(&quantized_out)?;
}
Ok(quantized_out)
}
}
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L226
#[derive(Debug)]
struct EncodecLSTM {
layers: Vec<candle_nn::LSTM>,
}
impl EncodecLSTM {
fn load(dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let vb = &vb.pp("lstm");
let mut layers = vec![];
for layer_idx in 0..cfg.num_lstm_layers {
let config = candle_nn::LSTMConfig {
layer_idx,
..Default::default()
};
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
layers.push(lstm)
}
Ok(Self { layers })
}
}
impl Module for EncodecLSTM {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
use candle_nn::RNN;
let mut xs = xs.clone();
for layer in self.layers.iter() {
let states = layer.seq(&xs)?;
xs = layer.states_to_tensor(&states)?;
}
Ok(xs)
}
}
#[derive(Debug)]
struct EncodecConvTranspose1d {
weight_g: Tensor,
weight_v: Tensor,
bias: Tensor,
}
impl EncodecConvTranspose1d {
fn load(
in_c: usize,
out_c: usize,
k: usize,
_stride: usize,
vb: VarBuilder,
_cfg: &Config,
) -> Result<Self> {
let vb = &vb.pp("conv");
let weight_g = vb.get((in_c, 1, 1), "weight_g")?;
let weight_v = vb.get((in_c, out_c, k), "weight_v")?;
let bias = vb.get(out_c, "bias")?;
Ok(Self {
weight_g,
weight_v,
bias,
})
}
}
impl Module for EncodecConvTranspose1d {
fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
}
}
#[derive(Debug)]
struct EncodecConv1d {
causal: bool,
conv: Conv1d,
norm: Option<candle_nn::GroupNorm>,
}
impl EncodecConv1d {
fn load(
in_c: usize,
out_c: usize,
kernel_size: usize,
stride: usize,
vb: VarBuilder,
cfg: &Config,
) -> Result<Self> {
let conv = match cfg.norm_type {
NormType::WeightNorm => conv1d_weight_norm(
in_c,
out_c,
kernel_size,
Conv1dConfig {
padding: 0,
stride,
groups: 1,
dilation: 1,
},
vb.pp("conv"),
)?,
NormType::None | NormType::TimeGroupNorm => conv1d(
in_c,
out_c,
kernel_size,
Conv1dConfig {
padding: 0,
stride,
groups: 1,
dilation: 1,
},
vb.pp("conv"),
)?,
};
let norm = match cfg.norm_type {
NormType::None | NormType::WeightNorm => None,
NormType::TimeGroupNorm => {
let gn = candle_nn::group_norm(1, out_c, 1e-5, vb.pp("norm"))?;
Some(gn)
}
};
Ok(Self {
causal: cfg.use_causal_conv,
conv,
norm,
})
}
}
impl Module for EncodecConv1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
// TODO: padding, depending on causal.
let xs = self.conv.forward(xs)?;
match &self.norm {
None => Ok(xs),
Some(norm) => xs.apply(norm),
}
}
}
#[derive(Debug)]
struct EncodecResnetBlock {
block_conv1: EncodecConv1d,
block_conv2: EncodecConv1d,
shortcut: Option<EncodecConv1d>,
}
impl EncodecResnetBlock {
fn load(dim: usize, dilations: &[usize], vb: VarBuilder, cfg: &Config) -> Result<Self> {
let h = dim / cfg.compress;
let mut layer = Layer::new(vb.pp("block"));
if dilations.len() != 2 {
candle::bail!("expected dilations of size 2")
}
// TODO: Apply dilations!
layer.inc();
let block_conv1 =
EncodecConv1d::load(dim, h, cfg.residual_kernel_size, 1, layer.next(), cfg)?;
layer.inc();
let block_conv2 = EncodecConv1d::load(h, dim, 1, 1, layer.next(), cfg)?;
let shortcut = if cfg.use_conv_shortcut {
let conv = EncodecConv1d::load(dim, dim, 1, 1, vb.pp("shortcut"), cfg)?;
Some(conv)
} else {
None
};
Ok(Self {
block_conv1,
block_conv2,
shortcut,
})
}
}
impl Module for EncodecResnetBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs.clone();
let xs = xs.elu(1.)?;
let xs = self.block_conv1.forward(&xs)?;
let xs = xs.elu(1.)?;
let xs = self.block_conv2.forward(&xs)?;
let xs = match &self.shortcut {
None => (xs + residual)?,
Some(shortcut) => xs.add(&shortcut.forward(&residual)?)?,
};
Ok(xs)
}
}
struct Layer<'a> {
vb: VarBuilder<'a>,
cnt: usize,
}
impl<'a> Layer<'a> {
fn new(vb: VarBuilder<'a>) -> Self {
Self { vb, cnt: 0 }
}
fn inc(&mut self) {
self.cnt += 1;
}
fn next(&mut self) -> VarBuilder {
let vb = self.vb.pp(&self.cnt.to_string());
self.cnt += 1;
vb
}
}
#[derive(Debug)]
struct EncodecEncoder {
init_conv: EncodecConv1d,
sampling_layers: Vec<(Vec<EncodecResnetBlock>, EncodecConv1d)>,
final_lstm: EncodecLSTM,
final_conv: EncodecConv1d,
}
impl EncodecEncoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let init_conv = EncodecConv1d::load(
cfg.audio_channels,
cfg.num_filters,
cfg.kernel_size,
1,
layer.next(),
cfg,
)?;
let mut sampling_layers = vec![];
let mut scaling = 1;
for &ratio in cfg.upsampling_ratios.iter().rev() {
let current_scale = scaling * cfg.num_filters;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::load(
current_scale,
&[cfg.dilation_growth_rate.pow(j), 1],
layer.next(),
cfg,
)?;
resnets.push(resnet)
}
layer.inc(); // ELU
let conv1d = EncodecConv1d::load(
current_scale,
current_scale * 2,
ratio * 2,
ratio,
layer.next(),
cfg,
)?;
sampling_layers.push((resnets, conv1d));
scaling *= 2;
}
let final_lstm = EncodecLSTM::load(cfg.num_filters * scaling, layer.next(), cfg)?;
layer.inc(); // ELU
let final_conv = EncodecConv1d::load(
cfg.num_filters * scaling,
cfg.hidden_size,
cfg.last_kernel_size,
1,
layer.next(),
cfg,
)?;
Ok(Self {
init_conv,
sampling_layers,
final_conv,
final_lstm,
})
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?;
for (resnets, conv) in self.sampling_layers.iter() {
for resnet in resnets.iter() {
xs = xs.apply(resnet)?;
}
xs = xs.elu(1.0)?.apply(conv)?;
}
xs.apply(&self.final_lstm)?
.elu(1.0)?
.apply(&self.final_conv)
}
}
#[derive(Debug)]
struct EncodecDecoder {
init_conv: EncodecConv1d,
init_lstm: EncodecLSTM,
sampling_layers: Vec<(EncodecConvTranspose1d, Vec<EncodecResnetBlock>)>,
final_conv: EncodecConv1d,
}
impl EncodecDecoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let mut scaling = usize::pow(2, cfg.upsampling_ratios.len() as u32);
let init_conv = EncodecConv1d::load(
cfg.hidden_size,
cfg.num_filters * scaling,
cfg.last_kernel_size,
1,
layer.next(),
cfg,
)?;
let init_lstm = EncodecLSTM::load(cfg.num_filters * scaling, layer.next(), cfg)?;
let mut sampling_layers = vec![];
for &ratio in cfg.upsampling_ratios.iter() {
let current_scale = scaling * cfg.num_filters;
layer.inc(); // ELU
let conv1d = EncodecConvTranspose1d::load(
current_scale,
current_scale / 2,
ratio * 2,
ratio,
layer.next(),
cfg,
)?;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::load(
current_scale / 2,
&[cfg.dilation_growth_rate.pow(j), 1],
layer.next(),
cfg,
)?;
resnets.push(resnet)
}
sampling_layers.push((conv1d, resnets));
scaling /= 2;
}
layer.inc(); // ELU
let final_conv = EncodecConv1d::load(
cfg.num_filters,
cfg.audio_channels,
cfg.last_kernel_size,
1,
layer.next(),
cfg,
)?;
Ok(Self {
init_conv,
init_lstm,
sampling_layers,
final_conv,
})
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
for (conv, resnets) in self.sampling_layers.iter() {
xs = xs.elu(1.)?.apply(conv)?;
for resnet in resnets.iter() {
xs = xs.apply(resnet)?
}
}
xs.elu(1.)?.apply(&self.final_conv)
}
}
#[derive(Debug)]
pub struct EncodecModel {
encoder: EncodecEncoder,
decoder: EncodecDecoder,
quantizer: EncodecResidualVectorQuantizer,
}
impl EncodecModel {
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let encoder = EncodecEncoder::load(vb.pp("encoder"), cfg)?;
let decoder = EncodecDecoder::load(vb.pp("decoder"), cfg)?;
let quantizer = EncodecResidualVectorQuantizer::load(vb.pp("quantizer"), cfg)?;
Ok(Self {
encoder,
decoder,
quantizer,
})
}
pub fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
}
}

View File

@ -10,9 +10,7 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
mod encodec_model;
mod musicgen_model;
mod nn;
use musicgen_model::{GenConfig, MusicgenForConditionalGeneration};

View File

@ -1,10 +1,9 @@
use crate::encodec_model;
use candle::{DType, Device, Result, Tensor, D};
use candle_nn::{
embedding, layer_norm, linear_no_bias, Activation, Embedding, LayerNorm, Linear, Module,
VarBuilder,
};
use candle_transformers::models::t5;
use candle_transformers::models::{encodec, t5};
// https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/models/musicgen/configuration_musicgen.py#L83
#[derive(Debug, Clone, PartialEq)]
@ -372,7 +371,7 @@ impl MusicgenForCausalLM {
#[derive(Debug)]
pub struct MusicgenForConditionalGeneration {
pub text_encoder: t5::T5EncoderModel,
pub audio_encoder: crate::encodec_model::EncodecModel,
pub audio_encoder: encodec::Model,
pub decoder: MusicgenForCausalLM,
cfg: GenConfig,
}
@ -381,15 +380,42 @@ pub struct MusicgenForConditionalGeneration {
pub struct GenConfig {
musicgen: Config,
t5: t5::Config,
encodec: crate::encodec_model::Config,
encodec: encodec::Config,
}
impl GenConfig {
pub fn small() -> Self {
// https://huggingface.co/facebook/musicgen-small/blob/495da4ad086b3416a27c6187f9239f9fd96f3962/config.json#L6
let encodec = encodec::Config {
audio_channels: 1,
chunk_length_s: None,
codebook_dim: Some(128),
codebook_size: 2048,
compress: 2,
dilation_growth_rate: 2,
hidden_size: 128,
kernel_size: 7,
last_kernel_size: 7,
norm_type: encodec::NormType::WeightNorm,
normalize: false,
num_filters: 64,
num_lstm_layers: 2,
num_residual_layers: 1,
overlap: None,
// This should be Reflect and not Replicate but Reflect does not work yet.
pad_mode: encodec::PadMode::Replicate,
residual_kernel_size: 3,
sampling_rate: 32_000,
target_bandwidths: vec![2.2],
trim_right_ratio: 1.0,
upsampling_ratios: vec![8, 5, 4, 4],
use_causal_conv: false,
use_conv_shortcut: false,
};
Self {
musicgen: Config::musicgen_small(),
t5: t5::Config::musicgen_small(),
encodec: encodec_model::Config::musicgen_small(),
encodec,
}
}
}
@ -401,8 +427,7 @@ impl MusicgenForConditionalGeneration {
pub fn load(vb: VarBuilder, cfg: GenConfig) -> Result<Self> {
let text_encoder = t5::T5EncoderModel::load(vb.pp("text_encoder"), &cfg.t5)?;
let audio_encoder =
encodec_model::EncodecModel::load(vb.pp("audio_encoder"), &cfg.encodec)?;
let audio_encoder = encodec::Model::new(&cfg.encodec, vb.pp("audio_encoder"))?;
let decoder = MusicgenForCausalLM::load(vb.pp("decoder"), &cfg.musicgen)?;
Ok(Self {
text_encoder,

View File

@ -1,20 +0,0 @@
use candle::Result;
use candle_nn::{Conv1d, Conv1dConfig, VarBuilder};
// Applies weight norm for inference by recomputing the weight tensor. This
// does not apply to training.
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
pub fn conv1d_weight_norm(
in_c: usize,
out_c: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight_g = vb.get((out_c, 1, 1), "weight_g")?;
let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?;
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
let bias = vb.get(out_c, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}