mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Add the candle-datasets crate (#322)
* Move the vision datasets to a separate crate. * Move the batcher bits. * Update the readme. * Move the tiny-stories bits. --------- Co-authored-by: Jane Doe <jane.doe@example.org>
This commit is contained in:
171
candle-datasets/src/batcher.rs
Normal file
171
candle-datasets/src/batcher.rs
Normal file
@ -0,0 +1,171 @@
|
||||
use candle::{Result, Tensor};
|
||||
|
||||
pub struct Batcher<I> {
|
||||
inner: I,
|
||||
batch_size: usize,
|
||||
return_last_incomplete_batch: bool,
|
||||
}
|
||||
|
||||
impl<I> Batcher<I> {
|
||||
fn new(inner: I) -> Self {
|
||||
Self {
|
||||
inner,
|
||||
batch_size: 16,
|
||||
return_last_incomplete_batch: false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn batch_size(mut self, batch_size: usize) -> Self {
|
||||
self.batch_size = batch_size;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn return_last_incomplete_batch(mut self, r: bool) -> Self {
|
||||
self.return_last_incomplete_batch = r;
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Iter1<I: Iterator<Item = Tensor>> {
|
||||
inner: I,
|
||||
}
|
||||
|
||||
pub struct Iter2<I: Iterator<Item = (Tensor, Tensor)>> {
|
||||
inner: I,
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Tensor>> Batcher<Iter1<I>> {
|
||||
pub fn new1(inner: I) -> Self {
|
||||
Self::new(Iter1 { inner })
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = (Tensor, Tensor)>> Batcher<Iter2<I>> {
|
||||
pub fn new2(inner: I) -> Self {
|
||||
Self::new(Iter2 { inner })
|
||||
}
|
||||
}
|
||||
|
||||
pub struct IterResult1<I: Iterator<Item = Result<Tensor>>> {
|
||||
inner: I,
|
||||
}
|
||||
|
||||
pub struct IterResult2<I: Iterator<Item = Result<(Tensor, Tensor)>>> {
|
||||
inner: I,
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<Tensor>>> Batcher<IterResult1<I>> {
|
||||
pub fn new_r1(inner: I) -> Self {
|
||||
Self::new(IterResult1 { inner })
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Batcher<IterResult2<I>> {
|
||||
pub fn new_r2(inner: I) -> Self {
|
||||
Self::new(IterResult2 { inner })
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Tensor>> Iterator for Batcher<Iter1<I>> {
|
||||
type Item = Result<Tensor>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut items = Vec::with_capacity(self.batch_size);
|
||||
for _i in 0..self.batch_size {
|
||||
// We have two levels of inner here so that we can have two implementations of the
|
||||
// Iterator trait that are different for Iter1 and Iter2. If rust gets better
|
||||
// specialization at some point we can get rid of this.
|
||||
match self.inner.inner.next() {
|
||||
Some(item) => items.push(item),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
Some(Tensor::stack(&items, 0))
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = (Tensor, Tensor)>> Iterator for Batcher<Iter2<I>> {
|
||||
type Item = Result<(Tensor, Tensor)>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut xs = Vec::with_capacity(self.batch_size);
|
||||
let mut ys = Vec::with_capacity(self.batch_size);
|
||||
for _i in 0..self.batch_size {
|
||||
match self.inner.inner.next() {
|
||||
Some((x, y)) => {
|
||||
xs.push(x);
|
||||
ys.push(y)
|
||||
}
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
let xs = Tensor::stack(&xs, 0);
|
||||
let ys = Tensor::stack(&ys, 0);
|
||||
Some(xs.and_then(|xs| ys.map(|ys| (xs, ys))))
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<Tensor>>> Iterator for Batcher<IterResult1<I>> {
|
||||
type Item = Result<Tensor>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut items = Vec::with_capacity(self.batch_size);
|
||||
for _i in 0..self.batch_size {
|
||||
// We have two levels of inner here so that we can have two implementations of the
|
||||
// Iterator trait that are different for Iter1 and Iter2. If rust gets better
|
||||
// specialization at some point we can get rid of this.
|
||||
match self.inner.inner.next() {
|
||||
Some(item) => items.push(item),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
let items = items.into_iter().collect::<Result<Vec<Tensor>>>();
|
||||
Some(items.and_then(|items| Tensor::stack(&items, 0)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Iterator for Batcher<IterResult2<I>> {
|
||||
type Item = Result<(Tensor, Tensor)>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut xs = Vec::with_capacity(self.batch_size);
|
||||
let mut ys = Vec::with_capacity(self.batch_size);
|
||||
let mut errs = vec![];
|
||||
for _i in 0..self.batch_size {
|
||||
match self.inner.inner.next() {
|
||||
Some(Ok((x, y))) => {
|
||||
xs.push(x);
|
||||
ys.push(y)
|
||||
}
|
||||
Some(Err(err)) => errs.push(err),
|
||||
None => {
|
||||
if self.return_last_incomplete_batch {
|
||||
break;
|
||||
}
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
if !errs.is_empty() {
|
||||
return Some(Err(errs.swap_remove(0)));
|
||||
}
|
||||
let xs = Tensor::stack(&xs, 0);
|
||||
let ys = Tensor::stack(&ys, 0);
|
||||
Some(xs.and_then(|xs| ys.map(|ys| (xs, ys))))
|
||||
}
|
||||
}
|
6
candle-datasets/src/lib.rs
Normal file
6
candle-datasets/src/lib.rs
Normal file
@ -0,0 +1,6 @@
|
||||
//! Datasets & Dataloaders for Candle
|
||||
pub mod batcher;
|
||||
pub mod nlp;
|
||||
pub mod vision;
|
||||
|
||||
pub use batcher::Batcher;
|
1
candle-datasets/src/nlp/mod.rs
Normal file
1
candle-datasets/src/nlp/mod.rs
Normal file
@ -0,0 +1 @@
|
||||
pub mod tinystories;
|
122
candle-datasets/src/nlp/tinystories.rs
Normal file
122
candle-datasets/src/nlp/tinystories.rs
Normal file
@ -0,0 +1,122 @@
|
||||
//! Helper functions for the tinystories dataset. This uses the pre-tokenized version as generated
|
||||
//! by the tools from https://github.com/karpathy/llama2.c
|
||||
use candle::{Device, Result, Tensor};
|
||||
|
||||
pub struct Dataset {
|
||||
valid_tokens: Vec<memmap2::Mmap>,
|
||||
train_tokens: Vec<memmap2::Mmap>,
|
||||
}
|
||||
|
||||
fn mmap_file(p: &std::path::PathBuf) -> Result<memmap2::Mmap> {
|
||||
let file = std::fs::File::open(p)?;
|
||||
let mmap = unsafe { memmap2::MmapOptions::new().map(&file)? };
|
||||
Ok(mmap)
|
||||
}
|
||||
|
||||
impl Dataset {
|
||||
pub fn new<P: AsRef<std::path::Path>>(dir: P) -> Result<Self> {
|
||||
let dir = dir.as_ref();
|
||||
let mut bin_files = vec![];
|
||||
for file in std::fs::read_dir(dir)?.flatten() {
|
||||
let file = file.path();
|
||||
if let Some(extension) = file.extension() {
|
||||
if extension == "bin" {
|
||||
bin_files.push(file)
|
||||
}
|
||||
}
|
||||
}
|
||||
if bin_files.len() < 2 {
|
||||
candle::bail!("found less than two bin files in {:?}", dir)
|
||||
}
|
||||
bin_files.sort();
|
||||
let valid_tokens = mmap_file(&bin_files[0])?;
|
||||
let train_tokens = bin_files[1..]
|
||||
.iter()
|
||||
.map(mmap_file)
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self {
|
||||
valid_tokens: vec![valid_tokens],
|
||||
train_tokens,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn train_tokens(&self) -> usize {
|
||||
self.train_tokens.len()
|
||||
}
|
||||
|
||||
pub fn valid_tokens(&self) -> usize {
|
||||
self.valid_tokens.len()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DatasetRandomIter<'a> {
|
||||
all_tokens: &'a [memmap2::Mmap],
|
||||
tokens: Vec<&'a memmap2::Mmap>,
|
||||
current_tokens: &'a memmap2::Mmap,
|
||||
indexes_in_bytes: Vec<usize>,
|
||||
seq_len: usize,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl<'a> DatasetRandomIter<'a> {
|
||||
pub fn new(ds: &'a Dataset, valid: bool, seq_len: usize, device: Device) -> Self {
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
let all_tokens = if valid {
|
||||
&ds.valid_tokens
|
||||
} else {
|
||||
&ds.train_tokens
|
||||
};
|
||||
let mut tokens = all_tokens.iter().collect::<Vec<_>>();
|
||||
tokens.shuffle(&mut thread_rng());
|
||||
let current_tokens = tokens.pop().unwrap();
|
||||
let seq_len_in_bytes = seq_len * 2;
|
||||
let mut indexes_in_bytes = (0..current_tokens.len() - seq_len_in_bytes)
|
||||
.step_by(seq_len_in_bytes)
|
||||
.collect::<Vec<_>>();
|
||||
indexes_in_bytes.shuffle(&mut thread_rng());
|
||||
Self {
|
||||
all_tokens,
|
||||
tokens,
|
||||
current_tokens,
|
||||
indexes_in_bytes,
|
||||
seq_len,
|
||||
device,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Iterator for DatasetRandomIter<'a> {
|
||||
type Item = Result<(Tensor, Tensor)>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::thread_rng;
|
||||
|
||||
let seq_len = self.seq_len;
|
||||
if self.indexes_in_bytes.is_empty() {
|
||||
if self.tokens.is_empty() {
|
||||
self.tokens = self.all_tokens.iter().collect();
|
||||
self.tokens.shuffle(&mut thread_rng());
|
||||
}
|
||||
self.current_tokens = self.tokens.pop().unwrap();
|
||||
let seq_len_in_bytes = self.seq_len * 2;
|
||||
self.indexes_in_bytes = (0..self.current_tokens.len() - seq_len_in_bytes)
|
||||
.step_by(seq_len_in_bytes)
|
||||
.collect::<Vec<_>>();
|
||||
self.indexes_in_bytes.shuffle(&mut thread_rng());
|
||||
}
|
||||
let start_idx = self.indexes_in_bytes.pop().unwrap();
|
||||
let bytes = &self.current_tokens[start_idx..start_idx + 2 * (seq_len + 1)];
|
||||
let mut tokens = vec![0u16; bytes.len() / 2];
|
||||
if let Err(err) = std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens) {
|
||||
return Some(Err(err.into()));
|
||||
}
|
||||
let tokens = tokens.into_iter().map(|v| v as u32).collect::<Vec<_>>();
|
||||
let inputs = Tensor::new(&tokens[..seq_len], &self.device);
|
||||
let targets = Tensor::new(&tokens[1..], &self.device);
|
||||
Some(candle::error::zip(inputs, targets))
|
||||
}
|
||||
}
|
62
candle-datasets/src/vision/cifar.rs
Normal file
62
candle-datasets/src/vision/cifar.rs
Normal file
@ -0,0 +1,62 @@
|
||||
//! The CIFAR-10 dataset.
|
||||
//!
|
||||
//! The files can be downloaded from the following page:
|
||||
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
|
||||
//! The binary version of the dataset is used.
|
||||
use crate::vision::Dataset;
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use std::fs::File;
|
||||
use std::io::{BufReader, Read};
|
||||
|
||||
const W: usize = 32;
|
||||
const H: usize = 32;
|
||||
const C: usize = 3;
|
||||
const BYTES_PER_IMAGE: usize = W * H * C + 1;
|
||||
const SAMPLES_PER_FILE: usize = 10000;
|
||||
|
||||
fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
|
||||
let mut buf_reader = BufReader::new(File::open(filename)?);
|
||||
let mut data = vec![0u8; SAMPLES_PER_FILE * BYTES_PER_IMAGE];
|
||||
buf_reader.read_exact(&mut data)?;
|
||||
let mut images = vec![];
|
||||
let mut labels = vec![];
|
||||
for index in 0..SAMPLES_PER_FILE {
|
||||
let content_offset = BYTES_PER_IMAGE * index;
|
||||
labels.push(data[content_offset]);
|
||||
images.push(&data[1 + content_offset..content_offset + BYTES_PER_IMAGE]);
|
||||
}
|
||||
let images: Vec<u8> = images
|
||||
.iter()
|
||||
.copied()
|
||||
.flatten()
|
||||
.copied()
|
||||
.collect::<Vec<_>>();
|
||||
let labels = Tensor::from_vec(labels, SAMPLES_PER_FILE, &Device::Cpu)?;
|
||||
let images = Tensor::from_vec(images, (SAMPLES_PER_FILE, C, H, W), &Device::Cpu)?;
|
||||
let images = (images.to_dtype(DType::F32)? / 255.)?;
|
||||
Ok((images, labels))
|
||||
}
|
||||
|
||||
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
|
||||
let dir = dir.as_ref();
|
||||
let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
|
||||
let train_images_and_labels = [
|
||||
"data_batch_1.bin",
|
||||
"data_batch_2.bin",
|
||||
"data_batch_3.bin",
|
||||
"data_batch_4.bin",
|
||||
"data_batch_5.bin",
|
||||
]
|
||||
.iter()
|
||||
.map(|x| read_file(&dir.join(x)))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let (train_images, train_labels): (Vec<_>, Vec<_>) =
|
||||
train_images_and_labels.into_iter().unzip();
|
||||
Ok(Dataset {
|
||||
train_images: Tensor::cat(&train_images, 0)?,
|
||||
train_labels: Tensor::cat(&train_labels, 0)?,
|
||||
test_images,
|
||||
test_labels,
|
||||
labels: 10,
|
||||
})
|
||||
}
|
65
candle-datasets/src/vision/mnist.rs
Normal file
65
candle-datasets/src/vision/mnist.rs
Normal file
@ -0,0 +1,65 @@
|
||||
//! The MNIST hand-written digit dataset.
|
||||
//!
|
||||
//! The files can be obtained from the following link:
|
||||
//! <http://yann.lecun.com/exdb/mnist/>
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use std::fs::File;
|
||||
use std::io::{self, BufReader, Read};
|
||||
|
||||
fn read_u32<T: Read>(reader: &mut T) -> Result<u32> {
|
||||
let mut b = vec![0u8; 4];
|
||||
reader.read_exact(&mut b)?;
|
||||
let (result, _) = b.iter().rev().fold((0u64, 1u64), |(s, basis), &x| {
|
||||
(s + basis * u64::from(x), basis * 256)
|
||||
});
|
||||
Ok(result as u32)
|
||||
}
|
||||
|
||||
fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> {
|
||||
let magic_number = read_u32(reader)?;
|
||||
if magic_number != expected {
|
||||
Err(io::Error::new(
|
||||
io::ErrorKind::Other,
|
||||
format!("incorrect magic number {magic_number} != {expected}"),
|
||||
))?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn read_labels(filename: &std::path::Path) -> Result<Tensor> {
|
||||
let mut buf_reader = BufReader::new(File::open(filename)?);
|
||||
check_magic_number(&mut buf_reader, 2049)?;
|
||||
let samples = read_u32(&mut buf_reader)?;
|
||||
let mut data = vec![0u8; samples as usize];
|
||||
buf_reader.read_exact(&mut data)?;
|
||||
let samples = data.len();
|
||||
Tensor::from_vec(data, samples, &Device::Cpu)
|
||||
}
|
||||
|
||||
fn read_images(filename: &std::path::Path) -> Result<Tensor> {
|
||||
let mut buf_reader = BufReader::new(File::open(filename)?);
|
||||
check_magic_number(&mut buf_reader, 2051)?;
|
||||
let samples = read_u32(&mut buf_reader)? as usize;
|
||||
let rows = read_u32(&mut buf_reader)? as usize;
|
||||
let cols = read_u32(&mut buf_reader)? as usize;
|
||||
let data_len = samples * rows * cols;
|
||||
let mut data = vec![0u8; data_len];
|
||||
buf_reader.read_exact(&mut data)?;
|
||||
let tensor = Tensor::from_vec(data, (samples, rows * cols), &Device::Cpu)?;
|
||||
tensor.to_dtype(DType::F32)? / 255.
|
||||
}
|
||||
|
||||
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<crate::vision::Dataset> {
|
||||
let dir = dir.as_ref();
|
||||
let train_images = read_images(&dir.join("train-images-idx3-ubyte"))?;
|
||||
let train_labels = read_labels(&dir.join("train-labels-idx1-ubyte"))?;
|
||||
let test_images = read_images(&dir.join("t10k-images-idx3-ubyte"))?;
|
||||
let test_labels = read_labels(&dir.join("t10k-labels-idx1-ubyte"))?;
|
||||
Ok(crate::vision::Dataset {
|
||||
train_images,
|
||||
train_labels,
|
||||
test_images,
|
||||
test_labels,
|
||||
labels: 10,
|
||||
})
|
||||
}
|
12
candle-datasets/src/vision/mod.rs
Normal file
12
candle-datasets/src/vision/mod.rs
Normal file
@ -0,0 +1,12 @@
|
||||
use candle::Tensor;
|
||||
|
||||
pub struct Dataset {
|
||||
pub train_images: Tensor,
|
||||
pub train_labels: Tensor,
|
||||
pub test_images: Tensor,
|
||||
pub test_labels: Tensor,
|
||||
pub labels: usize,
|
||||
}
|
||||
|
||||
pub mod cifar;
|
||||
pub mod mnist;
|
Reference in New Issue
Block a user