mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Backend refactoring. (#1966)
* Backend refactoring. * Metal tweaks. * Move the cudnn module.
This commit is contained in:
123
candle-core/src/cuda_backend/cudnn.rs
Normal file
123
candle-core/src/cuda_backend/cudnn.rs
Normal file
@ -0,0 +1,123 @@
|
||||
use crate::WithDType;
|
||||
use cudarc;
|
||||
use cudarc::cudnn::safe::{Conv2dForward, Cudnn};
|
||||
use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits};
|
||||
use std::cell::RefCell;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
// The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither
|
||||
// send nor sync.
|
||||
thread_local! {
|
||||
static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into();
|
||||
}
|
||||
|
||||
impl From<cudarc::cudnn::CudnnError> for crate::Error {
|
||||
fn from(err: cudarc::cudnn::CudnnError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<cudarc::driver::DriverError> for crate::Error {
|
||||
fn from(err: cudarc::driver::DriverError) -> Self {
|
||||
crate::Error::wrap(err)
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn launch_conv2d<
|
||||
T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType,
|
||||
>(
|
||||
src: &CudaView<T>,
|
||||
src_l: &crate::Layout,
|
||||
filter: &CudaView<T>,
|
||||
dst: &mut CudaSlice<T>,
|
||||
params: &crate::conv::ParamsConv2D,
|
||||
dev: &crate::cuda_backend::CudaDevice,
|
||||
) -> crate::Result<()> {
|
||||
use crate::conv::CudnnFwdAlgo as CandleAlgo;
|
||||
use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A;
|
||||
|
||||
let device_id = dev.id();
|
||||
let cudnn = CUDNN.with(|cudnn| {
|
||||
if let Some(cudnn) = cudnn.borrow().get(&device_id) {
|
||||
return Ok(cudnn.clone());
|
||||
}
|
||||
let c = Cudnn::new(dev.cuda_device());
|
||||
if let Ok(c) = &c {
|
||||
cudnn.borrow_mut().insert(device_id, c.clone());
|
||||
}
|
||||
c
|
||||
})?;
|
||||
let conv = cudnn.create_conv2d::<T>(
|
||||
/* pad */ [params.padding as i32, params.padding as i32],
|
||||
/* stride */ [params.stride as i32, params.stride as i32],
|
||||
/* dilation */ [params.dilation as i32, params.dilation as i32],
|
||||
cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION,
|
||||
)?;
|
||||
let x_shape = [
|
||||
params.b_size as i32,
|
||||
params.c_in as i32,
|
||||
params.i_h as i32,
|
||||
params.i_w as i32,
|
||||
];
|
||||
// Note that `src` already starts at the proper offset.
|
||||
let x = if src_l.is_contiguous() {
|
||||
cudnn.create_4d_tensor(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
x_shape,
|
||||
)?
|
||||
} else {
|
||||
let s = src_l.stride();
|
||||
cudnn.create_4d_tensor_ex(
|
||||
x_shape,
|
||||
[s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32],
|
||||
)?
|
||||
};
|
||||
let w = cudnn.create_4d_filter(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[
|
||||
params.c_out as i32,
|
||||
params.c_in as i32,
|
||||
params.k_h as i32,
|
||||
params.k_w as i32,
|
||||
],
|
||||
)?;
|
||||
let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32);
|
||||
let y = cudnn.create_4d_tensor(
|
||||
cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW,
|
||||
[params.b_size as i32, params.c_out as i32, h_out, w_out],
|
||||
)?;
|
||||
let conv2d = Conv2dForward {
|
||||
conv: &conv,
|
||||
x: &x,
|
||||
w: &w,
|
||||
y: &y,
|
||||
};
|
||||
let alg = match params.cudnn_fwd_algo {
|
||||
None => conv2d.pick_algorithm()?,
|
||||
Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM,
|
||||
Some(CandleAlgo::ImplicitPrecompGemm) => {
|
||||
A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
|
||||
}
|
||||
Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM,
|
||||
Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT,
|
||||
Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT,
|
||||
Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING,
|
||||
Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD,
|
||||
Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED,
|
||||
Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
|
||||
};
|
||||
let workspace_size = conv2d.get_workspace_size(alg)?;
|
||||
let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?;
|
||||
unsafe {
|
||||
conv2d.launch::<CudaSlice<u8>, _, _, _>(
|
||||
alg,
|
||||
Some(&mut workspace),
|
||||
(T::one(), T::zero()),
|
||||
src,
|
||||
filter,
|
||||
dst,
|
||||
)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user