mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Early conversion for the llama weights.
This commit is contained in:
@ -1,7 +1,7 @@
|
||||
use super::*;
|
||||
use candle::{DType, Device, Result, Shape, Tensor, WithDType};
|
||||
use candle::{DType, Device, Result, Shape, Tensor};
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Clone)]
|
||||
@ -14,51 +14,28 @@ struct NamedVar {
|
||||
#[derive(Clone)]
|
||||
pub struct VarBuilder {
|
||||
path: Vec<String>,
|
||||
vars: std::rc::Rc<std::cell::RefCell<Vec<NamedVar>>>,
|
||||
default_dtype: DType,
|
||||
default_device: Device,
|
||||
tensors: Arc<Option<HashMap<String, Tensor>>>,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct VarStore {
|
||||
vars: Vec<NamedVar>,
|
||||
tensors: Arc<Mutex<HashMap<String, Tensor>>>,
|
||||
}
|
||||
|
||||
impl VarBuilder {
|
||||
pub fn new<B: WithDType>(device: &Device, tensors: Option<HashMap<String, Tensor>>) -> Self {
|
||||
let vars = std::rc::Rc::new(std::cell::RefCell::new(vec![]));
|
||||
pub fn new(device: &Device, tensors: HashMap<String, Tensor>) -> Self {
|
||||
Self {
|
||||
path: vec![],
|
||||
vars,
|
||||
default_dtype: B::DTYPE,
|
||||
tensors: Arc::new(tensors),
|
||||
tensors: Arc::new(Mutex::new(tensors)),
|
||||
default_device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.vars.borrow().len()
|
||||
}
|
||||
|
||||
pub fn var(&self, s: &str) -> Result<Tensor> {
|
||||
pub fn get_and_remove(&self, s: &str) -> Result<Tensor> {
|
||||
let path = format!("{}.{s}", self.path.join("."));
|
||||
let parameter = match self.tensors.as_ref() {
|
||||
None => panic!("Cannot find tensors"),
|
||||
Some(tensors) => match tensors.get(&path) {
|
||||
Some(tensor) => tensor.to_device(&self.default_device)?,
|
||||
None => panic!("cannot find tensor for {path}"),
|
||||
},
|
||||
let mut tensors = self.tensors.as_ref().lock().unwrap();
|
||||
let parameter = match tensors.remove(&path) {
|
||||
Some(tensor) => tensor.to_device(&self.default_device)?,
|
||||
None => panic!("cannot find tensor for {path}"),
|
||||
};
|
||||
Ok(parameter)
|
||||
}
|
||||
|
||||
pub fn into_store(self) -> VarStore {
|
||||
let vars = self.vars.borrow();
|
||||
VarStore {
|
||||
vars: vars.to_vec(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: ToString> std::ops::Div<S> for &VarBuilder {
|
||||
@ -69,8 +46,6 @@ impl<S: ToString> std::ops::Div<S> for &VarBuilder {
|
||||
path.push(rhs.to_string());
|
||||
VarBuilder {
|
||||
path,
|
||||
vars: self.vars.clone(),
|
||||
default_dtype: self.default_dtype,
|
||||
default_device: self.default_device.clone(),
|
||||
tensors: self.tensors.clone(),
|
||||
}
|
||||
@ -87,21 +62,21 @@ impl<S: ToString> std::ops::Div<S> for VarBuilder {
|
||||
|
||||
impl Embedding {
|
||||
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
||||
let embeddings = vb.var("weight")?;
|
||||
let embeddings = vb.get_and_remove("weight")?.to_dtype(DTYPE)?;
|
||||
Ok(Self { embeddings })
|
||||
}
|
||||
}
|
||||
|
||||
impl Linear {
|
||||
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
||||
let weight = vb.var("weight")?.t()?;
|
||||
let weight = vb.get_and_remove("weight")?.to_dtype(DTYPE)?.t()?;
|
||||
Ok(Self { weight })
|
||||
}
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn load_npy(vb: VarBuilder) -> Result<Self> {
|
||||
let scale = vb.var("scale")?;
|
||||
let scale = vb.get_and_remove("scale")?.to_dtype(DTYPE)?;
|
||||
Ok(Self::new(scale))
|
||||
}
|
||||
}
|
||||
@ -144,7 +119,7 @@ impl Llama {
|
||||
filename: &str,
|
||||
cache: &Cache,
|
||||
config: &Config,
|
||||
) -> Result<Self> {
|
||||
) -> anyhow::Result<Self> {
|
||||
let weight_path = std::path::Path::new(filename);
|
||||
let weights = if weight_path.exists() {
|
||||
println!("loading weights from {weight_path:?}");
|
||||
@ -152,12 +127,11 @@ impl Llama {
|
||||
let tensors = Tensor::read_npz(weight_path)?;
|
||||
println!("loaded weights in {:?}", start_load.elapsed());
|
||||
let tensors: std::collections::HashMap<String, Tensor> = tensors.into_iter().collect();
|
||||
Some(tensors)
|
||||
tensors
|
||||
} else {
|
||||
println!("cannot find {weight_path:?}, using zero weights");
|
||||
None
|
||||
anyhow::bail!("cannot find {weight_path:?}")
|
||||
};
|
||||
let vb = VarBuilder::new::<f32>(device, weights);
|
||||
let vb = VarBuilder::new(device, weights);
|
||||
|
||||
let wte = Embedding::load_npy(&vb / "transformer" / "wte")?;
|
||||
let lm_head = Linear::load_npy(&vb / "lm_head")?;
|
||||
|
@ -18,7 +18,7 @@ fn convert(view: TensorView<'_>, device: &Device) -> Result<Tensor> {
|
||||
// was correctly aligned.
|
||||
let data: &[f16] =
|
||||
unsafe { std::slice::from_raw_parts(v.as_ptr() as *const f16, v.len() / 2) };
|
||||
Tensor::from_slice(data, view.shape(), device)
|
||||
Tensor::from_slice(data, view.shape(), device)?.to_dtype(DTYPE)
|
||||
} else {
|
||||
let mut c = Vec::with_capacity(v.len() / 2);
|
||||
let mut i = 0;
|
||||
@ -26,7 +26,7 @@ fn convert(view: TensorView<'_>, device: &Device) -> Result<Tensor> {
|
||||
c.push(f16::from_le_bytes([v[i], v[i + 1]]));
|
||||
i += 2;
|
||||
}
|
||||
Tensor::from_slice(&c, view.shape(), device)
|
||||
Tensor::from_slice(&c, view.shape(), device)?.to_dtype(DTYPE)
|
||||
}
|
||||
}
|
||||
dt => todo!("Unhandled dtype {dt:?}"),
|
||||
|
Reference in New Issue
Block a user