mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Add Pixtral. (#2521)
* Add Pixtral. * More pixtral vision encoder. * Sketch a pixtral example. * Sketch a pixtral example. * Better image loading. * Support loading images embedded in safetensor files. * Clippy fixes. * Add the llava multimodal adapter. * Add more of the llava bits. * Add the pixtral config. * More pixtral inference. * Add the text generation bits. * Get the example to work. * Bugfix. * Run some bits of the model in f32. * Blessed version :) * Better rope frequency computations. * README update.
This commit is contained in:
336
candle-examples/examples/pixtral/main.rs
Normal file
336
candle-examples/examples/pixtral/main.rs
Normal file
@ -0,0 +1,336 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::pixtral::{vision_model, Config, Model};
|
||||
|
||||
use candle::{DType, Device, Module, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
image: Tensor,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
image: Tensor,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
image,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let mut generated_tokens = 0usize;
|
||||
let get_token = |v| match self.tokenizer.get_token(v) {
|
||||
Some(token) => Ok(token),
|
||||
None => anyhow::bail!("cannot find the {v} token"),
|
||||
};
|
||||
let bos_token = get_token("<s>")?;
|
||||
let eos_token = get_token("</s>")?;
|
||||
let inst_token = get_token("[INST]")?;
|
||||
let end_inst_token = get_token("[/INST]")?;
|
||||
let img_break = get_token("[IMG_BREAK]")?;
|
||||
let img_end = get_token("[IMG_END]")?;
|
||||
let start_gen = std::time::Instant::now();
|
||||
let mut pos = 0;
|
||||
for index in 0..sample_len {
|
||||
let logits = if index > 0 {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.language_model.forward(&input, pos)?;
|
||||
pos += context_size;
|
||||
logits
|
||||
} else {
|
||||
let (_b, _c, h, w) = self.image.dims4()?;
|
||||
let h = h / self.model.patch_size;
|
||||
let w = w / self.model.patch_size;
|
||||
let image_embeds = self.model.vision_tower.forward(&self.image)?;
|
||||
let image_embeds = self.model.multi_modal_projector.forward(&image_embeds)?;
|
||||
println!("generated image embeddings {image_embeds:?}");
|
||||
let image_embeds = image_embeds.to_dtype(self.model.dtype)?;
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let break_embeds = {
|
||||
let input = Tensor::new(&[img_break], &self.device)?.unsqueeze(0)?;
|
||||
self.model.language_model.embed_tokens().forward(&input)?
|
||||
};
|
||||
let start_embeds = {
|
||||
let mut in_tokens = vec![bos_token, inst_token];
|
||||
in_tokens.extend_from_slice(tokens.as_slice());
|
||||
let input = Tensor::new(in_tokens.as_slice(), &self.device)?.unsqueeze(0)?;
|
||||
self.model.language_model.embed_tokens().forward(&input)?
|
||||
};
|
||||
let end_embeds = {
|
||||
let input =
|
||||
Tensor::new(&[img_end, end_inst_token], &self.device)?.unsqueeze(0)?;
|
||||
self.model.language_model.embed_tokens().forward(&input)?
|
||||
};
|
||||
let mut input_embeds = vec![start_embeds];
|
||||
for h_idx in 0..h {
|
||||
if h_idx > 0 {
|
||||
input_embeds.push(break_embeds.clone())
|
||||
}
|
||||
let row = image_embeds.narrow(1, h_idx * w, w)?;
|
||||
input_embeds.push(row);
|
||||
}
|
||||
input_embeds.push(end_embeds);
|
||||
|
||||
let input_embeds = Tensor::cat(&input_embeds, 1)?;
|
||||
let logits = self
|
||||
.model
|
||||
.language_model
|
||||
.forward_embeds(&input_embeds, None, pos)?;
|
||||
pos += input_embeds.dim(1)?;
|
||||
logits
|
||||
};
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long, default_value = "Describe the image.\n")]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
config_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
|
||||
#[arg(long)]
|
||||
vision_only: bool,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "mistral-community/pixtral-12b".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.supports_bf16() && !args.vision_only {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let config: Config = match args.config_file {
|
||||
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
|
||||
None => {
|
||||
let config_file = repo.get("config.json")?;
|
||||
serde_json::from_slice(&std::fs::read(config_file)?)?
|
||||
}
|
||||
};
|
||||
let image = if args.image.ends_with(".safetensors") {
|
||||
match candle::safetensors::load(&args.image, &device)?.remove("img") {
|
||||
None => anyhow::bail!("no img tensor in {}", args.image),
|
||||
Some(v) => v,
|
||||
}
|
||||
} else {
|
||||
candle_examples::imagenet::load_image_with_std_mean(
|
||||
&args.image,
|
||||
1024,
|
||||
&[0.48145466, 0.4578275, 0.40821073],
|
||||
&[0.26862954, 0.261_302_6, 0.275_777_1],
|
||||
)?
|
||||
};
|
||||
let image = image.to_device(&device)?.unsqueeze(0)?;
|
||||
println!("loaded image with shape {:?}", image);
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
|
||||
if args.vision_only {
|
||||
let start = std::time::Instant::now();
|
||||
let model = vision_model::Model::new(&config.vision_config, vb.pp("vision_tower"))?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
let embs = model.forward(&image)?;
|
||||
println!("EMBS\n{embs}");
|
||||
} else {
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
let start = std::time::Instant::now();
|
||||
let model = Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
image,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user