Add Pixtral. (#2521)

* Add Pixtral.

* More pixtral vision encoder.

* Sketch a pixtral example.

* Sketch a pixtral example.

* Better image loading.

* Support loading images embedded in safetensor files.

* Clippy fixes.

* Add the llava multimodal adapter.

* Add more of the llava bits.

* Add the pixtral config.

* More pixtral inference.

* Add the text generation bits.

* Get the example to work.

* Bugfix.

* Run some bits of the model in f32.

* Blessed version :)

* Better rope frequency computations.

* README update.
This commit is contained in:
Laurent Mazare
2024-09-30 19:31:14 +02:00
committed by GitHub
parent 2f49e1b534
commit 683ab698de
9 changed files with 822 additions and 19 deletions

View File

@ -279,7 +279,7 @@ impl LLaVA {
(),
))?
} else {
todo!("not implemented in original python LLaVA yet")
bail!("not implemented in original python LLaVA yet")
};
let new_image_feature = if mm_patch_merge_type.contains("unpad") {
let new_image_feature = new_image_feature

View File

@ -4,19 +4,29 @@ use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
use std::sync::Arc;
fn default_num_attention_heads() -> usize {
32
}
fn default_use_flash_attn() -> bool {
false
}
fn default_hidden_act() -> candle_nn::Activation {
candle_nn::Activation::Silu
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
pub vocab_size: usize,
pub hidden_size: usize,
pub intermediate_size: usize,
pub num_hidden_layers: usize,
#[serde(default = "default_num_attention_heads")]
pub num_attention_heads: usize,
pub head_dim: Option<usize>,
pub num_key_value_heads: usize,
#[serde(default = "default_hidden_act")]
pub hidden_act: Activation,
pub max_position_embeddings: usize,
pub rms_norm_eps: f64,
@ -107,14 +117,14 @@ impl RotaryEmbedding {
.map(|i| 1f32 / rope_theta.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(DType::F32)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(dtype)?
.to_dtype(DType::F32)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
sin: freqs.sin()?.to_dtype(dtype)?,
cos: freqs.cos()?.to_dtype(dtype)?,
})
}
@ -404,6 +414,10 @@ impl Model {
.to_dtype(self.dtype)
}
pub fn embed_tokens(&self) -> &candle_nn::Embedding {
&self.embed_tokens
}
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (_b_size, seq_len) = input_ids.dims2()?;
let attention_mask = if seq_len <= 1 {
@ -421,6 +435,22 @@ impl Model {
.apply(&self.lm_head)
}
pub fn forward_embeds(
&mut self,
xs: &Tensor,
attn_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (_b_size, seq_len, _) = xs.dims3()?;
let mut xs = xs.clone();
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attn_mask, seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()

View File

@ -51,6 +51,7 @@ pub mod parler_tts;
pub mod persimmon;
pub mod phi;
pub mod phi3;
pub mod pixtral;
pub mod quantized_blip;
pub mod quantized_blip_text;
pub mod quantized_llama;

View File

@ -0,0 +1,72 @@
use candle::{Module, Result, Tensor};
use candle_nn::{linear, Linear, VarBuilder};
use super::vision_model;
use crate::models::mistral;
#[derive(serde::Deserialize, Debug, Clone)]
pub struct Config {
pub projector_hidden_act: candle_nn::Activation,
pub text_config: mistral::Config,
pub vision_config: vision_model::Config,
pub image_token_index: usize,
pub image_seq_length: usize,
}
#[derive(Debug, Clone)]
pub struct MultiModalProjector {
linear_1: Linear,
act: candle_nn::Activation,
linear_2: Linear,
}
impl MultiModalProjector {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let (hidden_v, hidden_t) = (cfg.vision_config.hidden_size, cfg.text_config.hidden_size);
let linear_1 = linear(hidden_v, hidden_t, vb.pp("linear_1"))?;
let linear_2 = linear(hidden_t, hidden_t, vb.pp("linear_2"))?;
Ok(Self {
linear_1,
act: cfg.projector_hidden_act,
linear_2,
})
}
}
impl Module for MultiModalProjector {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.linear_1)?
.apply(&self.act)?
.apply(&self.linear_2)
}
}
#[derive(Debug, Clone)]
pub struct Model {
pub multi_modal_projector: MultiModalProjector,
pub language_model: mistral::Model,
pub vision_tower: vision_model::Model,
pub patch_size: usize,
pub dtype: candle::DType,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let language_model = mistral::Model::new(&cfg.text_config, vb.pp("language_model"))?;
let vision_tower = vision_model::Model::new(
&cfg.vision_config,
vb.pp("vision_tower").to_dtype(candle::DType::F32),
)?;
let multi_modal_projector = MultiModalProjector::new(
cfg,
vb.pp("multi_modal_projector").to_dtype(candle::DType::F32),
)?;
Ok(Self {
multi_modal_projector,
language_model,
vision_tower,
patch_size: cfg.vision_config.patch_size,
dtype: vb.dtype(),
})
}
}

View File

@ -0,0 +1,4 @@
pub mod llava;
pub mod vision_model;
pub use llava::{Config, Model};

View File

@ -0,0 +1,324 @@
use candle::{DType, Module, Result, Tensor, D};
use candle_nn::{linear_b, rms_norm, Linear, RmsNorm, VarBuilder};
fn default_act() -> candle_nn::Activation {
candle_nn::Activation::Gelu
}
fn default_hidden_size() -> usize {
1024
}
fn default_intermediate_size() -> usize {
4096
}
fn default_num_channels() -> usize {
3
}
fn default_num_hidden_layers() -> usize {
24
}
fn default_num_attention_heads() -> usize {
16
}
#[derive(serde::Deserialize, Debug, Clone)]
pub struct Config {
#[serde(default = "default_hidden_size")]
pub hidden_size: usize,
#[serde(default = "default_num_channels")]
pub num_channels: usize,
pub image_size: usize,
pub patch_size: usize,
pub rope_theta: f64,
#[serde(default = "default_intermediate_size")]
pub intermediate_size: usize,
#[serde(default = "default_num_hidden_layers")]
pub num_hidden_layers: usize,
pub head_dim: Option<usize>,
#[serde(default = "default_num_attention_heads")]
pub num_attention_heads: usize,
#[serde(default = "default_act")]
pub hidden_act: candle_nn::Activation,
}
impl Config {
pub fn pixtral_12b_2409() -> Self {
Self {
hidden_size: 1024,
num_channels: 3,
image_size: 1024,
patch_size: 16,
rope_theta: 10000.0,
intermediate_size: 4096,
num_hidden_layers: 24,
num_attention_heads: 16,
head_dim: None,
// Default
hidden_act: candle_nn::Activation::Gelu,
}
}
fn head_dim(&self) -> usize {
self.head_dim
.unwrap_or(self.hidden_size / self.num_attention_heads)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
scale: f64,
num_heads: usize,
head_dim: usize,
}
impl Attention {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let h = cfg.hidden_size;
let num_heads = cfg.num_attention_heads;
let head_dim = cfg.head_dim();
let q_proj = linear_b(h, h, false, vb.pp("q_proj"))?;
let k_proj = linear_b(h, h, false, vb.pp("k_proj"))?;
let v_proj = linear_b(h, h, false, vb.pp("v_proj"))?;
let o_proj = linear_b(h, h, false, vb.pp("o_proj"))?;
let scale = (head_dim as f64).powf(-0.5);
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
scale,
num_heads,
head_dim,
})
}
fn forward(
&self,
xs: &Tensor,
emb: &RotaryEmbedding,
attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let (b, patches, _) = xs.dims3()?;
let query_states = xs.apply(&self.q_proj)?;
let key_states = xs.apply(&self.k_proj)?;
let value_states = xs.apply(&self.v_proj)?;
let shape = (b, patches, self.num_heads, self.head_dim);
let query_states = query_states.reshape(shape)?.transpose(1, 2)?.contiguous()?;
let key_states = key_states.reshape(shape)?.transpose(1, 2)?.contiguous()?;
let value_states = value_states.reshape(shape)?.transpose(1, 2)?.contiguous()?;
let (query_states, key_states) = emb.apply_rotary_emb_qkv(&query_states, &key_states)?;
let attn_weights = (query_states.matmul(&key_states.t()?)? * self.scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights
.matmul(&value_states)?
.transpose(1, 2)?
.reshape((b, patches, ()))?
.apply(&self.o_proj)
}
}
#[derive(Debug, Clone)]
struct Mlp {
gate_proj: Linear,
up_proj: Linear,
down_proj: Linear,
act_fn: candle_nn::Activation,
}
impl Mlp {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let (h, i) = (cfg.hidden_size, cfg.intermediate_size);
let gate_proj = linear_b(h, i, false, vb.pp("gate_proj"))?;
let up_proj = linear_b(h, i, false, vb.pp("up_proj"))?;
let down_proj = linear_b(i, h, false, vb.pp("down_proj"))?;
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn: cfg.hidden_act,
})
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
(xs.apply(&self.gate_proj)?.apply(&self.act_fn)? * xs.apply(&self.up_proj))?
.apply(&self.down_proj)
}
}
#[derive(Debug, Clone)]
struct AttentionLayer {
attention_norm: RmsNorm,
feed_forward: Mlp,
attention: Attention,
ffn_norm: RmsNorm,
}
impl AttentionLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let attention_norm = rms_norm(cfg.hidden_size, 1e-5, vb.pp("attention_norm"))?;
let feed_forward = Mlp::new(cfg, vb.pp("feed_forward"))?;
let attention = Attention::new(cfg, vb.pp("attention"))?;
let ffn_norm = rms_norm(cfg.hidden_size, 1e-5, vb.pp("ffn_norm"))?;
Ok(Self {
attention_norm,
feed_forward,
attention,
ffn_norm,
})
}
fn forward(
&self,
xs: &Tensor,
emb: &RotaryEmbedding,
attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let residual = xs;
let xs = self
.attention
.forward(&xs.apply(&self.attention_norm)?, emb, attention_mask)?;
let xs = (residual + xs)?;
let residual = &xs;
let xs = xs.apply(&self.ffn_norm)?.apply(&self.feed_forward)?;
xs + residual
}
}
#[derive(Debug, Clone)]
struct Transformer {
layers: Vec<AttentionLayer>,
}
impl Transformer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb = vb.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = AttentionLayer::new(cfg, vb.pp(layer_idx))?;
layers.push(layer)
}
Ok(Self { layers })
}
fn forward(
&self,
xs: &Tensor,
emb: &RotaryEmbedding,
attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let mut xs = xs.clone();
for layer in self.layers.iter() {
xs = layer.forward(&xs, emb, attention_mask)?
}
Ok(xs)
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
cos: Tensor,
sin: Tensor,
}
impl RotaryEmbedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dtype = vb.dtype();
let dev = vb.device();
let dim = cfg.head_dim();
let rope_theta = cfg.rope_theta as f32;
let max_patches_per_side = cfg.image_size / cfg.patch_size;
let freqs: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / rope_theta.powf(i as f32 / dim as f32))
.collect();
let freqs_h = freqs.iter().step_by(2).copied().collect::<Vec<_>>();
let freqs_h = Tensor::new(freqs_h, dev)?;
let freqs_w = freqs.iter().skip(1).step_by(2).copied().collect::<Vec<_>>();
let freqs_w = Tensor::new(freqs_w, dev)?;
let h = Tensor::arange(0u32, max_patches_per_side as u32, dev)?.to_dtype(DType::F32)?;
let w = Tensor::arange(0u32, max_patches_per_side as u32, dev)?.to_dtype(DType::F32)?;
let freqs_h = h.unsqueeze(1)?.matmul(&freqs_h.unsqueeze(0)?)?;
let freqs_w = w.unsqueeze(1)?.matmul(&freqs_w.unsqueeze(0)?)?;
let inv_freq = Tensor::cat(
&[
freqs_h.unsqueeze(1)?.repeat((1, max_patches_per_side, 1))?,
freqs_w.unsqueeze(0)?.repeat((max_patches_per_side, 1, 1))?,
],
D::Minus1,
)?
.reshape(((), dim / 2))?;
let cos = inv_freq.cos()?.to_dtype(dtype)?;
let sin = inv_freq.sin()?.to_dtype(dtype)?;
Ok(Self { cos, sin })
}
fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> {
let (_b_sz, _h, _seq_len, _n_embd) = q.dims4()?;
let cos = &self.cos;
let sin = &self.sin;
let q_embed = candle_nn::rotary_emb::rope(q, cos, sin)?;
let k_embed = candle_nn::rotary_emb::rope(k, cos, sin)?;
Ok((q_embed, k_embed))
}
}
#[derive(Debug, Clone)]
pub struct Model {
patch_conv: candle_nn::Conv2d,
ln_pre: RmsNorm,
transformer: Transformer,
patch_positional_embedding: RotaryEmbedding,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let conv2d_cfg = candle_nn::Conv2dConfig {
stride: cfg.patch_size,
..Default::default()
};
let patch_conv = candle_nn::conv2d_no_bias(
cfg.num_channels,
cfg.hidden_size,
cfg.patch_size,
conv2d_cfg,
vb.pp("patch_conv"),
)?;
let ln_pre = candle_nn::rms_norm(cfg.hidden_size, 1e-5, vb.pp("ln_pre"))?;
let transformer = Transformer::new(cfg, vb.pp("transformer"))?;
let patch_positional_embedding =
RotaryEmbedding::new(cfg, vb.pp("patch_positional_embedding"))?;
Ok(Self {
patch_conv,
ln_pre,
transformer,
patch_positional_embedding,
})
}
}
impl Module for Model {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let patch_embeds = xs.apply(&self.patch_conv)?;
let patch_embeds = patch_embeds.flatten_from(2)?.t()?.apply(&self.ln_pre)?;
self.transformer
.forward(&patch_embeds, &self.patch_positional_embedding, None)
}
}