Add support for TrOCR Model (#1303)

* add bce with logit loss

* add bce with logit loss

* remove imports

* fix tiny bug

* add test documentation and refactor function

* fix test cases and formatting

* add trocr model

* fix formatting

* commit the actual model lol

* more formatting

* remove tokenizer config
This commit is contained in:
Ogundepo Odunayo
2023-11-09 12:49:17 -05:00
committed by GitHub
parent e6697471bb
commit 6958384327
7 changed files with 767 additions and 15 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@ -0,0 +1,154 @@
use image::{DynamicImage, ImageBuffer};
use serde::Deserialize;
use std::collections::HashMap;
use candle::{DType, Device, Result, Tensor};
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct ProcessorConfig {
do_resize: bool,
height: u32,
width: u32,
do_rescale: bool,
do_normalize: bool,
image_mean: Vec<f32>,
image_std: Vec<f32>,
}
impl Default for ProcessorConfig {
fn default() -> Self {
Self {
do_resize: true,
height: 384,
width: 384,
do_rescale: true,
do_normalize: true,
image_mean: vec![0.5, 0.5, 0.5],
image_std: vec![0.5, 0.5, 0.5],
}
}
}
pub struct ViTImageProcessor {
do_resize: bool,
height: u32,
width: u32,
do_normalize: bool,
image_mean: Vec<f32>,
image_std: Vec<f32>,
}
impl ViTImageProcessor {
pub fn new(config: &ProcessorConfig) -> Self {
Self {
do_resize: config.do_resize,
height: config.height,
width: config.width,
do_normalize: config.do_normalize,
image_mean: config.image_mean.clone(),
image_std: config.image_std.clone(),
}
}
pub fn preprocess(&self, images: Vec<&str>) -> Result<Tensor> {
let height = self.height as usize;
let width = self.width as usize;
let channels = 3;
let images = self.load_images(images)?;
let resized_images: Vec<DynamicImage> = if self.do_resize {
images
.iter()
.map(|image| self.resize(image.clone(), None).unwrap())
.collect()
} else {
images
};
let normalized_images: Vec<Tensor> = if self.do_normalize {
resized_images
.iter()
.map(|image| self.normalize(image.clone(), None, None).unwrap())
.collect()
} else {
let resized_images: Vec<ImageBuffer<image::Rgb<u8>, Vec<u8>>> =
resized_images.iter().map(|image| image.to_rgb8()).collect();
let data = resized_images
.into_iter()
.map(|image| image.into_raw())
.collect::<Vec<Vec<u8>>>();
data.iter()
.map(|image| {
Tensor::from_vec(image.clone(), (height, width, channels), &Device::Cpu)
.unwrap()
.permute((2, 0, 1))
.unwrap()
})
.collect::<Vec<Tensor>>()
};
Tensor::stack(&normalized_images, 0)
}
fn resize(
&self,
image: image::DynamicImage,
size: Option<HashMap<String, u32>>,
) -> Result<image::DynamicImage> {
let (height, width) = match &size {
Some(size) => (size.get("height").unwrap(), size.get("width").unwrap()),
None => (&self.height, &self.width),
};
let resized_image =
image.resize_exact(*width, *height, image::imageops::FilterType::Triangle);
Ok(resized_image)
}
fn normalize(
&self,
image: image::DynamicImage,
mean: Option<Vec<f32>>,
std: Option<Vec<f32>>,
) -> Result<Tensor> {
let mean = match mean {
Some(mean) => mean,
None => self.image_mean.clone(),
};
let std = match std {
Some(std) => std,
None => self.image_std.clone(),
};
let mean = Tensor::from_vec(mean, (3, 1, 1), &Device::Cpu)?;
let std = Tensor::from_vec(std, (3, 1, 1), &Device::Cpu)?;
let image = image.to_rgb8();
let data = image.into_raw();
let height = self.height as usize;
let width = self.width as usize;
let channels = 3;
let data =
Tensor::from_vec(data, &[height, width, channels], &Device::Cpu)?.permute((2, 0, 1))?;
(data.to_dtype(DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
pub fn load_images(&self, image_path: Vec<&str>) -> Result<Vec<image::DynamicImage>> {
let mut images: Vec<image::DynamicImage> = Vec::new();
for path in image_path {
let img = image::io::Reader::open(path)?.decode().unwrap();
images.push(img);
}
Ok(images)
}
}

View File

@ -0,0 +1,132 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::{Parser, ValueEnum};
use candle::{DType, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::models::trocr;
use tokenizers::Tokenizer;
mod image_processor;
#[derive(Clone, Debug, Copy, ValueEnum)]
enum Which {
Base,
Large,
}
#[derive(Parser, Debug)]
struct Args {
#[arg(long)]
model: Option<String>,
/// Choose the variant of the model to run.
#[arg(long, default_value = "base")]
which: Which,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Text to be translated
#[arg(long)]
image: String,
}
pub fn main() -> anyhow::Result<()> {
use hf_hub::api::sync::Api;
let args = Args::parse();
let tokenizer_dec = {
let tokenizer = Api::new()?
.model(String::from("ToluClassics/candle-trocr-tokenizer"))
.get("tokenizer.json")?;
Tokenizer::from_file(&tokenizer).map_err(E::msg)?
};
let mut tokenizer_dec = TokenOutputStream::new(tokenizer_dec);
let device = candle_examples::device(args.cpu)?;
let vb = {
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => match args.which {
Which::Base => Api::new()?
.repo(hf_hub::Repo::with_revision(
"microsoft/trocr-base-handwritten".to_string(),
hf_hub::RepoType::Model,
"refs/pr/3".to_string(),
))
.get("model.safetensors")?,
Which::Large => Api::new()?
.repo(hf_hub::Repo::with_revision(
"microsoft/trocr-large-handwritten".to_string(),
hf_hub::RepoType::Model,
"refs/pr/6".to_string(),
))
.get("model.safetensors")?,
},
};
println!("model: {:?}", model);
unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? }
};
let encoder_config = match args.which {
Which::Base => candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten(),
Which::Large => {
candle_transformers::models::vit::Config::microsoft_trocr_base_handwritten()
}
};
let decoder_config = trocr::TrOCRConfig::default();
let mut model = trocr::TrOCRModel::new(&encoder_config, &decoder_config, vb)?;
let config = image_processor::ProcessorConfig::default();
let processor = image_processor::ViTImageProcessor::new(&config);
let image = vec![args.image.as_str()];
let image = processor.preprocess(image)?;
let encoder_xs = model.encoder().forward(&image)?;
let mut logits_processor =
candle_transformers::generation::LogitsProcessor::new(1337, None, None);
let mut token_ids: Vec<u32> = vec![decoder_config.decoder_start_token_id];
for index in 0..1000 {
let context_size = if index >= 1 { 1 } else { token_ids.len() };
let start_pos = token_ids.len().saturating_sub(context_size);
let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
let logits = model.decode(&input_ids, &encoder_xs, start_pos)?;
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
token_ids.push(token);
if let Some(t) = tokenizer_dec.next_token(token)? {
use std::io::Write;
print!("{t}");
std::io::stdout().flush()?;
}
if token == decoder_config.eos_token_id {
break;
}
}
if let Some(rest) = tokenizer_dec.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
println!();
Ok(())
}

View File

@ -0,0 +1,16 @@
# candle-trocr
`TrOCR` is a transformer OCR Model. In this example it is used to
transcribe image text. See the associated [model
card](https://huggingface.co/microsoft/trocr-base-printed) for details on
the model itself.
## Running an example
```bash
cargo run --example trocr --release -- --which base --cpu --image assets/trocr.png
```
```
<s> industry , Mr. Brown commented icily . " Let us have a</s>
```

View File

@ -29,6 +29,7 @@ pub mod segment_anything;
pub mod stable_diffusion;
pub mod stable_lm;
pub mod t5;
pub mod trocr;
pub mod vgg;
pub mod vit;
pub mod whisper;

View File

@ -0,0 +1,434 @@
use crate::models::vit::{Config, Embeddings, Encoder};
use candle::{Result, Tensor};
use candle_nn::{
embedding, layer_norm, linear_no_bias, Embedding, LayerNorm, Linear, Module, VarBuilder,
};
use serde::Deserialize;
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct TrOCRConfig {
pub vocab_size: usize,
pub d_model: usize,
pub hidden_size: usize,
pub decoder_layers: usize,
pub decoder_attention_heads: usize,
pub decoder_ffn_dim: usize,
pub activation_function: candle_nn::Activation,
pub max_position_embeddings: usize,
pub dropout: f64,
pub attention_dropout: f64,
pub activation_dropout: f64,
pub decoder_start_token_id: u32,
pub init_std: f64,
pub decoder_layerdrop: f64,
pub use_cache: bool,
pub scale_embedding: bool,
pub use_learned_position_embeddings: bool,
pub layernorm_embedding: bool,
pub pad_token_id: usize,
pub bos_token_id: usize,
pub eos_token_id: u32,
pub num_attention_heads: usize,
pub decoder_vocab_size: Option<usize>,
}
impl Default for TrOCRConfig {
fn default() -> Self {
Self {
vocab_size: 50265,
d_model: 1024,
hidden_size: 768,
decoder_layers: 12,
decoder_attention_heads: 16,
decoder_ffn_dim: 4096,
activation_function: candle_nn::Activation::Gelu,
max_position_embeddings: 512,
dropout: 0.1,
attention_dropout: 0.0,
activation_dropout: 0.0,
decoder_start_token_id: 2,
init_std: 0.02,
decoder_layerdrop: 0.0,
use_cache: true,
scale_embedding: false,
use_learned_position_embeddings: true,
layernorm_embedding: true,
pad_token_id: 1,
bos_token_id: 0,
eos_token_id: 2,
num_attention_heads: 12,
decoder_vocab_size: Some(50265),
}
}
}
#[derive(Debug, Clone)]
struct TrOCRLearnedPositionalEmbedding {
offset: usize,
weights: Embedding,
}
impl TrOCRLearnedPositionalEmbedding {
fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
let offset: usize = 2;
let num_embeddings = cfg.max_position_embeddings;
let embedding_dim = cfg.d_model;
let weights = embedding(num_embeddings + offset, embedding_dim, vb)?;
Ok(Self { offset, weights })
}
fn forward(&mut self, input_ids: &Tensor, past_key_values_length: u32) -> Result<Tensor> {
let (b_sz, seq_len) = input_ids.dims2()?;
let mut positions = Tensor::arange(
past_key_values_length,
seq_len as u32 + past_key_values_length,
input_ids.device(),
)?
.expand((b_sz, seq_len))?;
positions =
positions.broadcast_add(&Tensor::new(self.offset as u32, input_ids.device())?)?;
self.weights.forward(&positions)
}
}
#[derive(Debug, Clone)]
struct TrOCRAttention {
head_dim: usize,
num_heads: usize,
is_decoder: bool,
scaling: f64,
k_proj: Linear,
v_proj: Linear,
q_proj: Linear,
out_proj: Linear,
kv_cache: Option<(Tensor, Tensor)>,
}
impl TrOCRAttention {
fn load(
vb: VarBuilder,
cfg: &TrOCRConfig,
kdim: Option<usize>,
vdim: Option<usize>,
) -> Result<Self> {
let embed_dim = cfg.d_model;
let num_heads = cfg.decoder_attention_heads;
let head_dim = embed_dim / num_heads;
let kdim = kdim.unwrap_or(embed_dim);
let vdim = vdim.unwrap_or(embed_dim);
let k_proj = linear_no_bias(kdim, embed_dim, vb.pp("k_proj"))?;
let v_proj = linear_no_bias(vdim, embed_dim, vb.pp("v_proj"))?;
let q_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("q_proj"))?;
let out_proj = linear_no_bias(embed_dim, embed_dim, vb.pp("out_proj"))?;
Ok(Self {
head_dim,
num_heads,
is_decoder: true,
scaling: 1. / (head_dim as f64).sqrt(),
k_proj,
v_proj,
q_proj,
out_proj,
kv_cache: None,
})
}
fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
tensor
.reshape((bsz, (), self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(
&mut self,
xs: &Tensor,
kv_states: Option<&Tensor>,
attn_mask: Option<&Tensor>,
) -> Result<Tensor> {
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
let (key_states, value_states) = match kv_states {
None => {
let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
if self.is_decoder {
let kv_states = match &self.kv_cache {
None => (key_states, value_states),
Some((p_key_states, p_value_states)) => {
let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some(kv_states.clone());
kv_states
} else {
(key_states, value_states)
}
}
Some(kv_states) => {
let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
(key_states, value_states)
}
};
let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
let key_states = key_states.reshape(proj_shape)?;
let value_states = value_states.reshape(proj_shape)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
let attn_weights = match attn_mask {
None => attn_weights,
Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
};
let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_probs.matmul(&value_states)?;
attn_output
.reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
.transpose(1, 2)?
.reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
.apply(&self.out_proj)
}
}
#[derive(Debug, Clone)]
struct TrOCRDecoderLayer {
self_attn: TrOCRAttention,
activation_fn: candle_nn::Activation,
self_attn_layer_norm: LayerNorm,
encoder_attn: TrOCRAttention,
encoder_attn_layer_norm: LayerNorm,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl TrOCRDecoderLayer {
fn load(vb: VarBuilder, cfg: &TrOCRConfig) -> Result<Self> {
let embed_dim = cfg.d_model;
let self_attn = TrOCRAttention::load(vb.pp("self_attn"), cfg, None, None)?;
let self_attn_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("self_attn_layer_norm"))?;
let encoder_attn = TrOCRAttention::load(
vb.pp("encoder_attn"),
cfg,
Some(cfg.hidden_size),
Some(cfg.hidden_size),
)?;
let encoder_attn_layer_norm =
layer_norm(embed_dim, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
let fc1 = linear_no_bias(embed_dim, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear_no_bias(cfg.decoder_ffn_dim, embed_dim, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(embed_dim, 1e-5, vb.pp("final_layer_norm"))?;
let activation_fn = candle_nn::Activation::Gelu;
Ok(Self {
self_attn,
activation_fn,
self_attn_layer_norm,
encoder_attn,
encoder_attn_layer_norm,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Tensor,
encoder_hidden_states: Option<&Tensor>,
) -> Result<Tensor> {
let residual = xs.clone();
let xs = self.self_attn.forward(xs, None, Some(attention_mask))?;
let xs = (xs + residual)?;
let mut xs = self.self_attn_layer_norm.forward(&xs)?;
if let Some(encoder_hidden_states) = &encoder_hidden_states {
let residual = xs.clone();
let encoder_attention_mask = attention_mask.clone(); // TODO
xs = self.encoder_attn.forward(
&xs,
Some(encoder_hidden_states),
Some(&encoder_attention_mask),
)?;
xs = (xs + residual)?;
xs = self.encoder_attn_layer_norm.forward(&xs)?
}
let residual = xs.clone();
let xs = self.fc1.forward(&xs)?;
let xs = self.activation_fn.forward(&xs)?;
let xs = self.fc2.forward(&xs)?;
let xs = (xs + residual)?;
let xs = self.final_layer_norm.forward(&xs)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRDecoder {
layers: Vec<TrOCRDecoderLayer>,
embed_scale: Option<f64>,
embed_tokens: Embedding,
embed_positions: TrOCRLearnedPositionalEmbedding,
}
impl TrOCRDecoder {
fn new(cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("decoder.model.decoder");
let embed_tokens = embedding(cfg.vocab_size, cfg.d_model, vb.pp("embed_tokens"))?;
let embed_positions = TrOCRLearnedPositionalEmbedding::load(vb.pp("embed_positions"), cfg)?;
let mut layers = Vec::with_capacity(cfg.decoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.decoder_layers {
let layer = TrOCRDecoderLayer::load(vb_l.pp(idx), cfg)?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
layers,
embed_scale,
embed_tokens,
embed_positions,
})
}
pub fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let embed_pos = self.embed_positions.forward(xs, past_kv_len as u32)?;
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attn_mask, encoder_xs)?;
}
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCREncoder {
embeddings: Embeddings,
encoder: Encoder,
layernorm: LayerNorm,
}
impl TrOCREncoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_v = vb.pp("encoder");
let embeddings = Embeddings::new(cfg, false, vb_v.pp("embeddings"))?;
let encoder = Encoder::new(cfg, vb_v.pp("encoder"))?;
let layernorm = layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb_v.pp("layernorm"))?;
Ok(Self {
embeddings,
encoder,
layernorm,
})
}
pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let embedding_output = self.embeddings.forward(xs, None, false)?;
let encoder_outputs = self.encoder.forward(&embedding_output)?;
self.layernorm.forward(&encoder_outputs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRForCausalLM {
decoder: TrOCRDecoder,
output_projection: Linear,
}
impl TrOCRForCausalLM {
pub fn new(decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let decoder = TrOCRDecoder::new(decoder_cfg, vb.clone())?;
let output_projection =
candle_nn::Linear::new(decoder.embed_tokens.embeddings().clone(), None);
Ok(Self {
decoder,
output_projection,
})
}
pub fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let xs = self
.decoder
.forward(xs, encoder_xs, past_kv_len, attn_mask)?;
let xs = xs.apply(&self.output_projection)?;
Ok(xs)
}
}
#[derive(Debug, Clone)]
pub struct TrOCRModel {
encoder: TrOCREncoder,
decoder: TrOCRForCausalLM,
}
impl TrOCRModel {
pub fn new(encoder_cfg: &Config, decoder_cfg: &TrOCRConfig, vb: VarBuilder) -> Result<Self> {
let encoder = TrOCREncoder::new(encoder_cfg, vb.clone())?;
let decoder = TrOCRForCausalLM::new(decoder_cfg, vb)?;
Ok(Self { encoder, decoder })
}
pub fn encoder(&mut self) -> &mut TrOCREncoder {
&mut self.encoder
}
pub fn decoder(&mut self) -> &mut TrOCRForCausalLM {
&mut self.decoder
}
pub fn decode(
&mut self,
xs: &Tensor,
encoder_xs: &Tensor,
past_kv_len: usize,
) -> Result<Tensor> {
let seq_len = xs.dim(1)?;
let mask: Vec<_> = (0..seq_len)
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
self.decoder
.forward(xs, Some(encoder_xs), past_kv_len, &mask)
}
}

View File

@ -6,16 +6,16 @@ use candle_nn::{layer_norm, LayerNorm, VarBuilder};
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/vit/configuration_vit.py
#[derive(Debug, Clone)]
pub struct Config {
hidden_size: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
intermediate_size: usize,
hidden_act: candle_nn::Activation,
layer_norm_eps: f64,
image_size: usize,
patch_size: usize,
num_channels: usize,
qkv_bias: bool,
pub hidden_size: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub intermediate_size: usize,
pub hidden_act: candle_nn::Activation,
pub layer_norm_eps: f64,
pub image_size: usize,
pub patch_size: usize,
pub num_channels: usize,
pub qkv_bias: bool,
}
impl Config {
@ -34,6 +34,21 @@ impl Config {
qkv_bias: true,
}
}
pub fn microsoft_trocr_base_handwritten() -> Self {
Self {
hidden_size: 768,
num_hidden_layers: 12,
num_attention_heads: 12,
intermediate_size: 3072,
hidden_act: candle_nn::Activation::Gelu,
layer_norm_eps: 1e-12,
image_size: 384,
patch_size: 16,
num_channels: 3,
qkv_bias: false,
}
}
}
#[derive(Debug, Clone)]
@ -76,7 +91,7 @@ impl Module for PatchEmbeddings {
}
#[derive(Debug, Clone)]
struct Embeddings {
pub struct Embeddings {
cls_token: Tensor,
mask_token: Option<Tensor>,
patch_embeddings: PatchEmbeddings,
@ -85,7 +100,7 @@ struct Embeddings {
}
impl Embeddings {
fn new(cfg: &Config, use_mask_token: bool, vb: VarBuilder) -> Result<Self> {
pub fn new(cfg: &Config, use_mask_token: bool, vb: VarBuilder) -> Result<Self> {
let hidden_size = cfg.hidden_size;
let cls_token = vb.get((1, 1, hidden_size), "cls_token")?;
let mask_token = if use_mask_token {
@ -115,7 +130,7 @@ impl Embeddings {
todo!()
}
fn forward(
pub fn forward(
&self,
pixel_values: &Tensor,
bool_masked_pos: Option<&Tensor>,
@ -324,12 +339,12 @@ impl Module for Layer {
}
#[derive(Debug, Clone)]
struct Encoder {
pub struct Encoder {
layers: Vec<Layer>,
}
impl Encoder {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("layer");
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
for i in 0..cfg.num_hidden_layers {