mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Add some Bigcode model (#260)
* Start sketching the bigcode gpt model. * Sketch the bigcode model. * Implement the attention mechanism. * Random reshaping. * Sketch more of the example. * Add some kv cache. * Properly generate the position ids. * Proper attention mask. * Bail on upcasting. * Properly apply the attention mask. * Add the smaller starcoder variants. * Update for the new hub api. * Fix a shape issue. * Fix another shape issue. * Get some logits out. * Adjust the weigth names.
This commit is contained in:
161
candle-examples/examples/bigcode/main.rs
Normal file
161
candle-examples/examples/bigcode/main.rs
Normal file
@ -0,0 +1,161 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
mod model;
|
||||
use model::{Config, GPTBigCode};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: GPTBigCode,
|
||||
device: Device,
|
||||
tokenizer: Tokenizer,
|
||||
logits_processor: LogitsProcessor,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
fn new(
|
||||
model: GPTBigCode,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp);
|
||||
Self {
|
||||
model,
|
||||
tokenizer,
|
||||
logits_processor,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
println!("starting the inference loop");
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
|
||||
let mut new_tokens = vec![];
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let start_gen = std::time::Instant::now();
|
||||
let (context_size, past_len) = if self.model.config().use_cache && index > 0 {
|
||||
(1, tokens.len().saturating_sub(1))
|
||||
} else {
|
||||
(tokens.len(), 0)
|
||||
};
|
||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = self.model.forward(&input, past_len)?;
|
||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
new_tokens.push(next_token);
|
||||
println!("> {:?}", start_gen.elapsed());
|
||||
println!(
|
||||
"{} token: {} '{}'",
|
||||
index + 1,
|
||||
next_token,
|
||||
self.tokenizer
|
||||
.decode(vec![next_token], true)
|
||||
.map_err(E::msg)?
|
||||
);
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
println!(
|
||||
"{sample_len} tokens generated ({} token/s)\n----\n{}\n----",
|
||||
sample_len as f64 / dt.as_secs_f64(),
|
||||
self.tokenizer.decode(new_tokens, true).map_err(E::msg)?
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, default_value_t = 100)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long, default_value = "bigcode/starcoderbase-1b")]
|
||||
model_id: String,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
weight_file: Option<String>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let args = Args::parse();
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
args.model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = repo.get("tokenizer.json")?;
|
||||
let filenames = match args.weight_file {
|
||||
Some(weight_file) => vec![std::path::PathBuf::from(weight_file.clone())],
|
||||
None => {
|
||||
let repo_filenames: Vec<String> = vec![];
|
||||
repo_filenames
|
||||
.iter()
|
||||
.map(|f| repo.get(f))
|
||||
.collect::<std::result::Result<Vec<_>, _>>()?
|
||||
}
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let weights = filenames
|
||||
.iter()
|
||||
.map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let weights = weights
|
||||
.iter()
|
||||
.map(|f| Ok(f.deserialize()?))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let vb = VarBuilder::from_safetensors(weights, DType::F32, &device);
|
||||
let config = Config::starcoder_1b();
|
||||
let model = GPTBigCode::load(vb, config)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(model, tokenizer, args.seed, args.temperature, &device);
|
||||
pipeline.run(&args.prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
357
candle-examples/examples/bigcode/model.rs
Normal file
357
candle-examples/examples/bigcode/model.rs
Normal file
@ -0,0 +1,357 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, LayerNorm, Linear, VarBuilder};
|
||||
|
||||
fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
let bias = if bias {
|
||||
Some(vb.get(size2, "bias")?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Ok(Linear::new(weight, bias))
|
||||
}
|
||||
|
||||
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
|
||||
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
|
||||
Ok(Embedding::new(embeddings, hidden_size))
|
||||
}
|
||||
|
||||
fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
|
||||
let weight = vb.get(size, "weight")?;
|
||||
let bias = vb.get(size, "bias")?;
|
||||
Ok(LayerNorm::new(weight, bias, eps))
|
||||
}
|
||||
|
||||
fn make_causal_mask(t: usize) -> Result<Tensor> {
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
|
||||
Ok(mask)
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Config {
|
||||
pub vocab_size: usize,
|
||||
// max_position_embeddings aka n_positions
|
||||
pub max_position_embeddings: usize,
|
||||
// num_hidden_layers aka n_layer
|
||||
pub num_hidden_layers: usize,
|
||||
// hidden_size aka n_embd
|
||||
pub hidden_size: usize,
|
||||
pub layer_norm_epsilon: f64,
|
||||
pub n_inner: Option<usize>,
|
||||
// num_attention_heads aka n_head
|
||||
pub num_attention_heads: usize,
|
||||
pub multi_query: bool,
|
||||
pub use_cache: bool,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
#[allow(dead_code)]
|
||||
pub fn starcoder_1b() -> Self {
|
||||
Self {
|
||||
vocab_size: 49152,
|
||||
max_position_embeddings: 8192,
|
||||
num_hidden_layers: 24,
|
||||
hidden_size: 2048,
|
||||
layer_norm_epsilon: 1e-5,
|
||||
n_inner: Some(8192),
|
||||
num_attention_heads: 16,
|
||||
multi_query: true,
|
||||
use_cache: true,
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn starcoder_3b() -> Self {
|
||||
Self {
|
||||
vocab_size: 49152,
|
||||
max_position_embeddings: 8192,
|
||||
num_hidden_layers: 36,
|
||||
hidden_size: 2816,
|
||||
layer_norm_epsilon: 1e-5,
|
||||
n_inner: Some(11264),
|
||||
num_attention_heads: 22,
|
||||
multi_query: true,
|
||||
use_cache: true,
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn starcoder_7b() -> Self {
|
||||
Self {
|
||||
vocab_size: 49152,
|
||||
max_position_embeddings: 8192,
|
||||
num_hidden_layers: 42,
|
||||
hidden_size: 4096,
|
||||
layer_norm_epsilon: 1e-5,
|
||||
n_inner: Some(16384),
|
||||
num_attention_heads: 32,
|
||||
multi_query: true,
|
||||
use_cache: true,
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn starcoder() -> Self {
|
||||
Self {
|
||||
vocab_size: 49152,
|
||||
max_position_embeddings: 8192,
|
||||
num_hidden_layers: 40,
|
||||
hidden_size: 6144,
|
||||
layer_norm_epsilon: 1e-5,
|
||||
n_inner: Some(24576),
|
||||
num_attention_heads: 48,
|
||||
multi_query: true,
|
||||
use_cache: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Attention {
|
||||
c_attn: Linear,
|
||||
c_proj: Linear,
|
||||
kv_cache: Option<Tensor>,
|
||||
use_cache: bool,
|
||||
embed_dim: usize,
|
||||
kv_dim: usize,
|
||||
num_heads: usize,
|
||||
head_dim: usize,
|
||||
multi_query: bool,
|
||||
}
|
||||
|
||||
impl Attention {
|
||||
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let hidden_size = cfg.hidden_size;
|
||||
let head_dim = hidden_size / cfg.num_attention_heads;
|
||||
let kv_heads = if cfg.multi_query {
|
||||
1
|
||||
} else {
|
||||
cfg.num_attention_heads
|
||||
};
|
||||
let kv_dim = kv_heads * head_dim;
|
||||
let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
|
||||
let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
|
||||
Ok(Self {
|
||||
c_proj,
|
||||
c_attn,
|
||||
embed_dim: hidden_size,
|
||||
kv_cache: None,
|
||||
use_cache: cfg.use_cache,
|
||||
kv_dim,
|
||||
head_dim,
|
||||
num_heads: cfg.num_attention_heads,
|
||||
multi_query: cfg.multi_query,
|
||||
})
|
||||
}
|
||||
|
||||
fn attn(
|
||||
&self,
|
||||
query: &Tensor,
|
||||
key: &Tensor,
|
||||
value: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
if query.dtype() != DType::F32 {
|
||||
// If we start supporting f16 models, we may need the upcasting scaling bits.
|
||||
// https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
|
||||
candle::bail!("upcasting is not supported {:?}", query.dtype())
|
||||
}
|
||||
let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
|
||||
let initial_query_shape = query.shape();
|
||||
let key_len = key.dim(D::Minus1)?;
|
||||
let (query, key, attn_shape, attn_view) = if self.multi_query {
|
||||
let (b_sz, query_len, _) = query.dims3()?;
|
||||
let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
|
||||
let attn_shape = (b_sz, query_len, self.num_heads, key_len);
|
||||
let attn_view = (b_sz, query_len * self.num_heads, key_len);
|
||||
(query, key.clone(), attn_shape, attn_view)
|
||||
} else {
|
||||
let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
|
||||
let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
|
||||
let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
|
||||
let attn_shape = (b_sz, self.num_heads, query_len, key_len);
|
||||
let attn_view = (b_sz * self.num_heads, query_len, key_len);
|
||||
(query, key, attn_shape, attn_view)
|
||||
};
|
||||
|
||||
let attn_weights = (query.matmul(&key)? * scale_factor)?.reshape(attn_shape)?;
|
||||
let attention_mask = attention_mask.broadcast_as(attn_shape)?;
|
||||
let mask_value =
|
||||
Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
|
||||
let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
|
||||
let attn_weights = attn_weights.softmax(D::Minus1)?;
|
||||
let attn_output = if self.multi_query {
|
||||
attn_weights
|
||||
.reshape(attn_view)?
|
||||
.matmul(value)?
|
||||
.reshape(initial_query_shape)?
|
||||
} else {
|
||||
attn_weights.matmul(value)?
|
||||
};
|
||||
Ok(attn_output)
|
||||
}
|
||||
|
||||
fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
|
||||
let qkv = self.c_attn.forward(hidden_states)?;
|
||||
let (query, key_value) = if self.multi_query {
|
||||
let query = qkv.i((.., .., ..self.embed_dim))?;
|
||||
let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
|
||||
(query, key_value)
|
||||
} else {
|
||||
let mut dims = qkv.dims().to_vec();
|
||||
dims.pop();
|
||||
dims.push(self.embed_dim);
|
||||
dims.push(self.head_dim * 3);
|
||||
let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
|
||||
let query = qkv.i((.., .., .., ..self.head_dim))?;
|
||||
let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
|
||||
(query, key_value)
|
||||
};
|
||||
let mut key_value = key_value;
|
||||
if self.use_cache {
|
||||
if let Some(kv_cache) = &self.kv_cache {
|
||||
// TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
|
||||
// arbitrarily large sizes.
|
||||
key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
|
||||
}
|
||||
self.kv_cache = Some(key_value.clone())
|
||||
}
|
||||
|
||||
let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
|
||||
let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
|
||||
let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
|
||||
let attn_output = if self.multi_query {
|
||||
attn_output
|
||||
} else {
|
||||
attn_output
|
||||
.transpose(1, 2)?
|
||||
.reshape(hidden_states.shape())?
|
||||
};
|
||||
let attn_output = self.c_proj.forward(&attn_output)?;
|
||||
Ok(attn_output)
|
||||
}
|
||||
}
|
||||
|
||||
struct Mlp {
|
||||
c_fc: Linear,
|
||||
c_proj: Linear,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
|
||||
let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
|
||||
Ok(Self { c_fc, c_proj })
|
||||
}
|
||||
|
||||
fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
|
||||
let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
|
||||
let hidden_states = self.c_proj.forward(&hidden_states)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add cross-attention?
|
||||
struct Block {
|
||||
ln_1: LayerNorm,
|
||||
attn: Attention,
|
||||
ln_2: LayerNorm,
|
||||
mlp: Mlp,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
|
||||
let hidden_size = cfg.hidden_size;
|
||||
let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
|
||||
let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
|
||||
let attn = Attention::load(vb.pp("attn"), cfg)?;
|
||||
let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
|
||||
let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
|
||||
Ok(Self {
|
||||
ln_1,
|
||||
attn,
|
||||
ln_2,
|
||||
mlp,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
|
||||
let residual = hidden_states;
|
||||
let hidden_states = self.ln_1.forward(hidden_states)?;
|
||||
let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
|
||||
let hidden_states = (&attn_outputs + residual)?;
|
||||
let residual = &hidden_states;
|
||||
let hidden_states = self.ln_2.forward(&hidden_states)?;
|
||||
let hidden_states = self.mlp.forward(&hidden_states)?;
|
||||
let hidden_states = (&hidden_states + residual)?;
|
||||
Ok(hidden_states)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GPTBigCode {
|
||||
wte: Embedding,
|
||||
wpe: Embedding,
|
||||
blocks: Vec<Block>,
|
||||
ln_f: LayerNorm,
|
||||
lm_head: Linear,
|
||||
bias: Tensor,
|
||||
config: Config,
|
||||
}
|
||||
|
||||
impl GPTBigCode {
|
||||
pub fn config(&self) -> &Config {
|
||||
&self.config
|
||||
}
|
||||
|
||||
pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
|
||||
let hidden_size = cfg.hidden_size;
|
||||
let vb_t = vb.pp("transformer");
|
||||
let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
|
||||
let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
|
||||
let blocks = (0..cfg.num_hidden_layers)
|
||||
.map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
|
||||
let lm_head = linear(hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?;
|
||||
let bias = make_causal_mask(cfg.max_position_embeddings)?;
|
||||
Ok(Self {
|
||||
wte,
|
||||
wpe,
|
||||
blocks,
|
||||
lm_head,
|
||||
ln_f,
|
||||
bias,
|
||||
config: cfg,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
|
||||
let dev = input_ids.device();
|
||||
let (b_sz, seq_len) = input_ids.dims2()?;
|
||||
|
||||
let key_len = past_len + seq_len;
|
||||
let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
|
||||
// MQA models: (batch_size, query_length, n_heads, key_length)
|
||||
// MHA models: (batch_size, n_heads, query_length, key_length)
|
||||
let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
|
||||
let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;
|
||||
|
||||
let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
|
||||
let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
|
||||
let input_embeds = self.wte.forward(input_ids)?;
|
||||
let position_embeds = self.wpe.forward(&position_ids)?;
|
||||
|
||||
let mut hidden_states = (&input_embeds + &position_embeds)?;
|
||||
for block in self.blocks.iter_mut() {
|
||||
hidden_states = block.forward(&hidden_states, &attention_mask)?;
|
||||
}
|
||||
let hidden_states = self.ln_f.forward(&hidden_states)?;
|
||||
let hidden_states = hidden_states
|
||||
.reshape((b_sz, seq_len, self.config.hidden_size))?
|
||||
.narrow(1, seq_len - 1, 1)?;
|
||||
let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
|
||||
Ok(logits)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user