More efficient cuda implementation for ConvTranspose1d. (#2211)

* More efficient cuda implementation for ConvTranspose1d.

* Small tweak.
This commit is contained in:
Laurent Mazare
2024-05-24 11:05:43 +02:00
committed by GitHub
parent d54e02d73d
commit 6f0b807ffd
3 changed files with 140 additions and 4 deletions

View File

@ -10,7 +10,7 @@ pub use utils::{
};
const USE_IM2COL_CONV1D: bool = true;
const USE_IM2COL_CONV1D_TR: bool = true;
const USE_COL2IM_CONV1D_TR: bool = true;
const USE_IM2COL_CONV2D: bool = true;
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
@ -2249,7 +2249,7 @@ impl BackendStorage for CpuStorage {
&& params.dilation == 1
&& params.padding == 0
&& params.output_padding == 0;
if USE_IM2COL_CONV1D_TR && can_use_col2im {
if USE_COL2IM_CONV1D_TR && can_use_col2im {
let (b_size, c_in, l_in) = l.shape().dims3()?;
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
if !kernel_l.is_contiguous() {

View File

@ -630,6 +630,31 @@ impl<'a> Map2 for Conv2D<'a> {
}
}
struct Col2Im1D {
stride: usize,
}
impl Map1 for Col2Im1D {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
col: &CudaSlice<T>,
dev: &CudaDevice,
l: &Layout,
) -> Result<CudaSlice<T>> {
let (b_size, l_in, c_out, k_size) = l.shape().dims4()?;
let stride = self.stride;
let l_out = (l_in - 1) * stride + k_size;
let dst_el = b_size * c_out * l_out;
let mut im = unsafe { dev.alloc::<T>(dst_el) }.w()?;
let cfg = LaunchConfig::for_num_elems(dst_el as u32);
let params = (dst_el, l_out, l_in, c_out, k_size, stride, col, &mut im);
let func = dev.get_or_load_func(&kernel_name::<T>("col2im1d"), kernels::CONV)?;
unsafe { func.launch(cfg, params) }.w()?;
Ok(im)
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
@ -1366,9 +1391,55 @@ impl BackendStorage for CudaStorage {
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
const USE_COL2IM_CONV1D_TR: bool = true;
let device = self.device().clone();
let slice =
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?;
let can_use_col2im = kernel_l.is_contiguous()
&& params.dilation == 1
&& params.padding == 0
&& params.output_padding == 0;
let slice = if USE_COL2IM_CONV1D_TR && can_use_col2im {
let (b_size, c_in, l_in) = l.shape().dims3()?;
let (c_in2, c_out, k_size) = kernel_l.shape().dims3()?;
if !kernel_l.is_contiguous() {
crate::bail!(
"convtr1d: the second argument (kernel) has to be contiguous {kernel_l:?}"
)
}
if c_in != c_in2 {
crate::bail!(
"convtr1d: shape mismatch on c_in {:?} {:?}",
l.shape(),
kernel_l.shape()
)
}
let col = {
// This merges the last two dimensions of the kernel together.
let kernel_l_mm = Layout::new(
(b_size, c_in, k_size * c_out).into(),
vec![0, k_size * c_out, 1],
kernel_l.start_offset(),
);
self.matmul(
kernel,
(
b_size,
/* m */ l_in,
/* n */ c_out * k_size,
/* k */ c_in,
),
&l.transpose(1, 2)?,
&kernel_l_mm,
)?
};
let col_l = Layout::contiguous((b_size, l_in, c_out, k_size));
Col2Im1D {
stride: params.stride,
}
.map(&col.slice, &device, &col_l)?
} else {
ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?
};
Ok(Self { slice, device })
}

View File

@ -97,6 +97,50 @@ __device__ void im2col1d(
}
}
template <typename T>
__device__ void col2im1d(
const size_t dst_el,
const size_t l_out,
const size_t l_in,
const size_t c_out,
const size_t k_size,
const size_t stride,
const T *src,
T *dst
) {
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
// src: (b_size, l_in, c_out, l_k)
// dst: (b_size, c_out, l_out)
if (dst_i >= dst_el) {
return;
}
const size_t dst_s0 = c_out * l_out;
const size_t dst_s1 = l_out;
const size_t src_s0 = c_out * k_size * l_in;
const size_t src_s1 = c_out * k_size;
const size_t src_s2 = k_size;
size_t tmp_dst_i = dst_i;
const size_t b_idx = tmp_dst_i / dst_s0;
tmp_dst_i -= b_idx * dst_s0;
const size_t c_idx = tmp_dst_i / dst_s1;
tmp_dst_i -= c_idx * dst_s1;
const int l_out_idx = tmp_dst_i;
dst[dst_i] = static_cast<T>(0);
int l_in_idx = l_out_idx / stride;
int k0 = l_out_idx - l_in_idx * stride;
// l_out_idx = l_in_idx * stride + k0
for (; k0 < k_size && l_in_idx >= 0; k0 += stride, --l_in_idx) {
if (l_in_idx < l_in) {
const size_t src_i = b_idx * src_s0 + l_in_idx * src_s1 + c_idx * src_s2 + k0;
dst[dst_i] += src[src_i];
}
}
}
template <typename T>
__device__ void im2col(
const size_t dst_numel,
@ -542,6 +586,20 @@ extern "C" __global__ void FN_NAME( \
im2col1d<TYPENAME>(dst_numel, l_out, l_k, stride, padding, dilation, info, src, dst); \
} \
#define COL2IM1D_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t dst_el, \
const size_t l_out, \
const size_t l_in, \
const size_t c_out, \
const size_t k_size, \
const size_t stride, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
col2im1d<TYPENAME>(dst_el, l_out, l_in, c_out, k_size, stride, src, dst); \
} \
#define IM2COL_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t dst_numel, \
@ -643,6 +701,7 @@ MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
IM2COL_OP(__nv_bfloat16, im2col_bf16)
IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16)
COL2IM1D_OP(__nv_bfloat16, col2im1d_bf16)
#endif
#if __CUDA_ARCH__ >= 530
@ -655,6 +714,7 @@ MAX_POOL2D_OP(__half, max_pool2d_f16)
UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
IM2COL_OP(__half, im2col_f16)
IM2COL1D_OP(__half, im2col1d_f16)
COL2IM1D_OP(__half, col2im1d_f16)
#endif
CONV1D_OP(float, float, conv1d_f32)
@ -701,3 +761,8 @@ IM2COL1D_OP(float, im2col1d_f32)
IM2COL1D_OP(double, im2col1d_f64)
IM2COL1D_OP(uint8_t, im2col1d_u8)
IM2COL1D_OP(uint32_t, im2col1d_u32)
COL2IM1D_OP(float, col2im1d_f32)
COL2IM1D_OP(double, col2im1d_f64)
COL2IM1D_OP(uint8_t, col2im1d_u8)
COL2IM1D_OP(uint32_t, col2im1d_u32)