mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
Get the MobileSAM TinyViT based version to work. (#789)
* More TinyViT support in SA. * More mobilesam work. * Add the mobile-sam weights to the hub.
This commit is contained in:
@ -1,13 +1,12 @@
|
||||
// Adapted from:
|
||||
// https://github.com/ChaoningZhang/MobileSAM/blob/master/mobile_sam/modeling/tiny_vit_sam.py
|
||||
#![allow(unused)]
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle::{IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Conv2dConfig, Module, VarBuilder};
|
||||
|
||||
const MBCONV_EXPAND_RATIO: usize = 4;
|
||||
const MLP_RATIO: usize = 4;
|
||||
const LOCAL_CONV_SIZE: usize = 3;
|
||||
const IMG_SIZE: usize = 224;
|
||||
const IMG_SIZE: usize = 1024;
|
||||
const IN_CHANNELS: usize = 3;
|
||||
|
||||
#[derive(Debug)]
|
||||
@ -18,7 +17,7 @@ struct Conv2dBN {
|
||||
|
||||
impl Conv2dBN {
|
||||
fn new(in_: usize, out: usize, ks: usize, cfg: Conv2dConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let c = candle_nn::conv2d(in_, out, ks, cfg, vb.pp("c"))?;
|
||||
let c = candle_nn::conv2d_no_bias(in_, out, ks, cfg, vb.pp("c"))?;
|
||||
let bn = candle_nn::batch_norm(out, 1e-5, vb.pp("bn"))?;
|
||||
Ok(Self { c, bn })
|
||||
}
|
||||
@ -222,7 +221,6 @@ struct Attention {
|
||||
norm: candle_nn::LayerNorm,
|
||||
qkv: candle_nn::Linear,
|
||||
proj: candle_nn::Linear,
|
||||
attention_biases: Tensor,
|
||||
ab: Tensor,
|
||||
key_dim: usize,
|
||||
num_heads: usize,
|
||||
@ -263,12 +261,14 @@ impl Attention {
|
||||
}
|
||||
let attention_biases = vb.get((num_heads, attention_offsets.len()), "attention_biases")?;
|
||||
let idxs = Tensor::new(idxs, attention_biases.device())?;
|
||||
let ab = attention_biases.index_select(&idxs, 1)?;
|
||||
let ab =
|
||||
attention_biases
|
||||
.index_select(&idxs, 1)?
|
||||
.reshape(((), points.len(), points.len()))?;
|
||||
Ok(Self {
|
||||
norm,
|
||||
qkv,
|
||||
proj,
|
||||
attention_biases,
|
||||
ab,
|
||||
key_dim,
|
||||
num_heads,
|
||||
@ -286,15 +286,18 @@ impl Module for Attention {
|
||||
let qkv = xs.apply(&self.qkv)?.reshape((b, n, self.num_heads, ()))?;
|
||||
let q = qkv
|
||||
.narrow(D::Minus1, 0, self.key_dim)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let k = qkv
|
||||
.narrow(D::Minus1, self.key_dim, self.key_dim)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let v = qkv
|
||||
.narrow(D::Minus1, 2 * self.key_dim, self.d)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let attn = (q.matmul(&k.t()?)? * self.scale)?;
|
||||
let attn = (attn + &self.ab)?;
|
||||
let attn = attn.broadcast_add(&self.ab)?;
|
||||
let attn = candle_nn::ops::softmax_last_dim(&attn)?;
|
||||
attn.matmul(&v)?
|
||||
.transpose(1, 2)?
|
||||
@ -332,6 +335,7 @@ impl TinyViTBlock {
|
||||
let mlp = Mlp::new(dim, dim * MLP_RATIO, vb.pp("mlp"))?;
|
||||
let cfg = candle_nn::Conv2dConfig {
|
||||
padding: LOCAL_CONV_SIZE / 2,
|
||||
groups: dim,
|
||||
..Default::default()
|
||||
};
|
||||
let local_conv = Conv2dBN::new(dim, dim, LOCAL_CONV_SIZE, cfg, vb.pp("local_conv"))?;
|
||||
@ -358,12 +362,12 @@ impl Module for TinyViTBlock {
|
||||
let pad_r = (self.window_size - w % self.window_size) % self.window_size;
|
||||
|
||||
let xs = if pad_b > 0 {
|
||||
xs.pad_with_zeros(D::Minus2, 0, pad_b)?
|
||||
xs.pad_with_zeros(1, 0, pad_b)?
|
||||
} else {
|
||||
xs
|
||||
};
|
||||
let xs = if pad_r > 0 {
|
||||
xs.pad_with_zeros(D::Minus1, 0, pad_r)?
|
||||
xs.pad_with_zeros(2, 0, pad_r)?
|
||||
} else {
|
||||
xs
|
||||
};
|
||||
@ -460,8 +464,8 @@ pub struct TinyViT {
|
||||
patch_embed: PatchEmbed,
|
||||
layer0: ConvLayer,
|
||||
layers: Vec<BasicLayer>,
|
||||
norm_head: candle_nn::LayerNorm,
|
||||
head: candle_nn::Linear,
|
||||
// norm_head: candle_nn::LayerNorm,
|
||||
// head: candle_nn::Linear,
|
||||
neck_conv1: candle_nn::Conv2d,
|
||||
neck_ln1: crate::LayerNorm2d,
|
||||
neck_conv2: candle_nn::Conv2d,
|
||||
@ -474,7 +478,7 @@ impl TinyViT {
|
||||
depths: &[usize],
|
||||
num_heads: &[usize],
|
||||
window_sizes: &[usize],
|
||||
num_classes: usize,
|
||||
_num_classes: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let patch_embed = PatchEmbed::new(IN_CHANNELS, embed_dims[0], vb.pp("patch_embed"))?;
|
||||
@ -509,8 +513,8 @@ impl TinyViT {
|
||||
}
|
||||
|
||||
let last_embed_dim = embed_dims[embed_dims.len() - 1];
|
||||
let norm_head = candle_nn::layer_norm(last_embed_dim, 1e-5, vb.pp("norm_head"))?;
|
||||
let head = candle_nn::linear(last_embed_dim, num_classes, vb.pp("head"))?;
|
||||
// let norm_head = candle_nn::layer_norm(last_embed_dim, 1e-5, vb.pp("norm_head"))?;
|
||||
// let head = candle_nn::linear(last_embed_dim, num_classes, vb.pp("head"))?;
|
||||
let neck_conv1 =
|
||||
candle_nn::conv2d_no_bias(last_embed_dim, 256, 1, Default::default(), vb.pp("neck.0"))?;
|
||||
let neck_ln1 = crate::LayerNorm2d::new(256, 1e-6, vb.pp("neck.1"))?;
|
||||
@ -525,8 +529,6 @@ impl TinyViT {
|
||||
patch_embed,
|
||||
layer0,
|
||||
layers,
|
||||
norm_head,
|
||||
head,
|
||||
neck_conv1,
|
||||
neck_ln1,
|
||||
neck_conv2,
|
||||
@ -537,7 +539,8 @@ impl TinyViT {
|
||||
|
||||
impl Module for TinyViT {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = self.patch_embed.forward(xs)?;
|
||||
let xs = self.patch_embed.forward(xs)?;
|
||||
let mut xs = self.layer0.forward(&xs)?;
|
||||
for layer in self.layers.iter() {
|
||||
xs = layer.forward(&xs)?
|
||||
}
|
||||
@ -551,7 +554,7 @@ impl Module for TinyViT {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tiny_vit_5m_224(vb: VarBuilder) -> Result<TinyViT> {
|
||||
pub fn tiny_vit_5m(vb: VarBuilder) -> Result<TinyViT> {
|
||||
TinyViT::new(
|
||||
/* embed_dims */ &[64, 128, 160, 320],
|
||||
/* depths */ &[2, 2, 6, 2],
|
||||
|
Reference in New Issue
Block a user