mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Get the MobileSAM TinyViT based version to work. (#789)
* More TinyViT support in SA. * More mobilesam work. * Add the mobile-sam weights to the hub.
This commit is contained in:
@ -133,6 +133,10 @@ struct Args {
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// Use the TinyViT based models from MobileSAM
|
||||
#[arg(long)]
|
||||
use_tiny: bool,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
@ -179,13 +183,22 @@ pub fn main() -> anyhow::Result<()> {
|
||||
None => {
|
||||
let api = hf_hub::api::sync::Api::new()?;
|
||||
let api = api.model("lmz/candle-sam".to_string());
|
||||
api.get("sam_vit_b_01ec64.safetensors")?
|
||||
let filename = if args.use_tiny {
|
||||
"mobile_sam-tiny-vitt.safetensors"
|
||||
} else {
|
||||
"sam_vit_b_01ec64.safetensors"
|
||||
};
|
||||
api.get(filename)?
|
||||
}
|
||||
};
|
||||
let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
|
||||
let weights = weights.deserialize()?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
|
||||
let sam = model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)?; // sam_vit_b
|
||||
let sam = if args.use_tiny {
|
||||
model_sam::Sam::new_tiny(vb)? // tiny vit_t
|
||||
} else {
|
||||
model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)? // sam_vit_b
|
||||
};
|
||||
|
||||
if args.generate_masks {
|
||||
// Default options similar to the Python version.
|
||||
|
@ -4,6 +4,7 @@ use candle_nn::{Module, VarBuilder};
|
||||
use crate::model_image_encoder::ImageEncoderViT;
|
||||
use crate::model_mask_decoder::MaskDecoder;
|
||||
use crate::model_prompt_encoder::PromptEncoder;
|
||||
use crate::model_tiny_vit::{tiny_vit_5m, TinyViT};
|
||||
|
||||
const PROMPT_EMBED_DIM: usize = 256;
|
||||
pub const IMAGE_SIZE: usize = 1024;
|
||||
@ -14,9 +15,24 @@ const STABILITY_SCORE_THRESHOLD: f32 = 0.95;
|
||||
const MODEL_MASK_THRESHOLD: f32 = 0.0;
|
||||
const CROP_NMS_THRESH: f32 = 0.7;
|
||||
|
||||
#[derive(Debug)]
|
||||
enum ImageEncoder {
|
||||
Original(ImageEncoderViT),
|
||||
TinyViT(TinyViT),
|
||||
}
|
||||
|
||||
impl Module for ImageEncoder {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
match self {
|
||||
Self::Original(vit) => vit.forward(xs),
|
||||
Self::TinyViT(vit) => vit.forward(xs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Sam {
|
||||
image_encoder: ImageEncoderViT,
|
||||
image_encoder: ImageEncoder,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: Tensor,
|
||||
@ -67,7 +83,38 @@ impl Sam {
|
||||
let pixel_std =
|
||||
Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
|
||||
Ok(Self {
|
||||
image_encoder,
|
||||
image_encoder: ImageEncoder::Original(image_encoder),
|
||||
prompt_encoder,
|
||||
mask_decoder,
|
||||
pixel_std,
|
||||
pixel_mean,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn new_tiny(vb: VarBuilder) -> Result<Self> {
|
||||
let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE;
|
||||
|
||||
let image_encoder = tiny_vit_5m(vb.pp("image_encoder"))?;
|
||||
let prompt_encoder = PromptEncoder::new(
|
||||
PROMPT_EMBED_DIM,
|
||||
(image_embedding_size, image_embedding_size),
|
||||
(IMAGE_SIZE, IMAGE_SIZE),
|
||||
16,
|
||||
vb.pp("prompt_encoder"),
|
||||
)?;
|
||||
let mask_decoder = MaskDecoder::new(
|
||||
PROMPT_EMBED_DIM,
|
||||
/* num_multitask_outputs */ 3,
|
||||
/* iou_head_depth */ 3,
|
||||
/* iou_head_hidden_dim */ 256,
|
||||
vb.pp("mask_decoder"),
|
||||
)?;
|
||||
let pixel_mean =
|
||||
Tensor::new(&[123.675f32, 116.28, 103.53], vb.device())?.reshape((3, 1, 1))?;
|
||||
let pixel_std =
|
||||
Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
|
||||
Ok(Self {
|
||||
image_encoder: ImageEncoder::TinyViT(image_encoder),
|
||||
prompt_encoder,
|
||||
mask_decoder,
|
||||
pixel_std,
|
||||
|
@ -1,13 +1,12 @@
|
||||
// Adapted from:
|
||||
// https://github.com/ChaoningZhang/MobileSAM/blob/master/mobile_sam/modeling/tiny_vit_sam.py
|
||||
#![allow(unused)]
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle::{IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Conv2dConfig, Module, VarBuilder};
|
||||
|
||||
const MBCONV_EXPAND_RATIO: usize = 4;
|
||||
const MLP_RATIO: usize = 4;
|
||||
const LOCAL_CONV_SIZE: usize = 3;
|
||||
const IMG_SIZE: usize = 224;
|
||||
const IMG_SIZE: usize = 1024;
|
||||
const IN_CHANNELS: usize = 3;
|
||||
|
||||
#[derive(Debug)]
|
||||
@ -18,7 +17,7 @@ struct Conv2dBN {
|
||||
|
||||
impl Conv2dBN {
|
||||
fn new(in_: usize, out: usize, ks: usize, cfg: Conv2dConfig, vb: VarBuilder) -> Result<Self> {
|
||||
let c = candle_nn::conv2d(in_, out, ks, cfg, vb.pp("c"))?;
|
||||
let c = candle_nn::conv2d_no_bias(in_, out, ks, cfg, vb.pp("c"))?;
|
||||
let bn = candle_nn::batch_norm(out, 1e-5, vb.pp("bn"))?;
|
||||
Ok(Self { c, bn })
|
||||
}
|
||||
@ -222,7 +221,6 @@ struct Attention {
|
||||
norm: candle_nn::LayerNorm,
|
||||
qkv: candle_nn::Linear,
|
||||
proj: candle_nn::Linear,
|
||||
attention_biases: Tensor,
|
||||
ab: Tensor,
|
||||
key_dim: usize,
|
||||
num_heads: usize,
|
||||
@ -263,12 +261,14 @@ impl Attention {
|
||||
}
|
||||
let attention_biases = vb.get((num_heads, attention_offsets.len()), "attention_biases")?;
|
||||
let idxs = Tensor::new(idxs, attention_biases.device())?;
|
||||
let ab = attention_biases.index_select(&idxs, 1)?;
|
||||
let ab =
|
||||
attention_biases
|
||||
.index_select(&idxs, 1)?
|
||||
.reshape(((), points.len(), points.len()))?;
|
||||
Ok(Self {
|
||||
norm,
|
||||
qkv,
|
||||
proj,
|
||||
attention_biases,
|
||||
ab,
|
||||
key_dim,
|
||||
num_heads,
|
||||
@ -286,15 +286,18 @@ impl Module for Attention {
|
||||
let qkv = xs.apply(&self.qkv)?.reshape((b, n, self.num_heads, ()))?;
|
||||
let q = qkv
|
||||
.narrow(D::Minus1, 0, self.key_dim)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let k = qkv
|
||||
.narrow(D::Minus1, self.key_dim, self.key_dim)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let v = qkv
|
||||
.narrow(D::Minus1, 2 * self.key_dim, self.d)?
|
||||
.permute((0, 2, 1, 3))?;
|
||||
.permute((0, 2, 1, 3))?
|
||||
.contiguous()?;
|
||||
let attn = (q.matmul(&k.t()?)? * self.scale)?;
|
||||
let attn = (attn + &self.ab)?;
|
||||
let attn = attn.broadcast_add(&self.ab)?;
|
||||
let attn = candle_nn::ops::softmax_last_dim(&attn)?;
|
||||
attn.matmul(&v)?
|
||||
.transpose(1, 2)?
|
||||
@ -332,6 +335,7 @@ impl TinyViTBlock {
|
||||
let mlp = Mlp::new(dim, dim * MLP_RATIO, vb.pp("mlp"))?;
|
||||
let cfg = candle_nn::Conv2dConfig {
|
||||
padding: LOCAL_CONV_SIZE / 2,
|
||||
groups: dim,
|
||||
..Default::default()
|
||||
};
|
||||
let local_conv = Conv2dBN::new(dim, dim, LOCAL_CONV_SIZE, cfg, vb.pp("local_conv"))?;
|
||||
@ -358,12 +362,12 @@ impl Module for TinyViTBlock {
|
||||
let pad_r = (self.window_size - w % self.window_size) % self.window_size;
|
||||
|
||||
let xs = if pad_b > 0 {
|
||||
xs.pad_with_zeros(D::Minus2, 0, pad_b)?
|
||||
xs.pad_with_zeros(1, 0, pad_b)?
|
||||
} else {
|
||||
xs
|
||||
};
|
||||
let xs = if pad_r > 0 {
|
||||
xs.pad_with_zeros(D::Minus1, 0, pad_r)?
|
||||
xs.pad_with_zeros(2, 0, pad_r)?
|
||||
} else {
|
||||
xs
|
||||
};
|
||||
@ -460,8 +464,8 @@ pub struct TinyViT {
|
||||
patch_embed: PatchEmbed,
|
||||
layer0: ConvLayer,
|
||||
layers: Vec<BasicLayer>,
|
||||
norm_head: candle_nn::LayerNorm,
|
||||
head: candle_nn::Linear,
|
||||
// norm_head: candle_nn::LayerNorm,
|
||||
// head: candle_nn::Linear,
|
||||
neck_conv1: candle_nn::Conv2d,
|
||||
neck_ln1: crate::LayerNorm2d,
|
||||
neck_conv2: candle_nn::Conv2d,
|
||||
@ -474,7 +478,7 @@ impl TinyViT {
|
||||
depths: &[usize],
|
||||
num_heads: &[usize],
|
||||
window_sizes: &[usize],
|
||||
num_classes: usize,
|
||||
_num_classes: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let patch_embed = PatchEmbed::new(IN_CHANNELS, embed_dims[0], vb.pp("patch_embed"))?;
|
||||
@ -509,8 +513,8 @@ impl TinyViT {
|
||||
}
|
||||
|
||||
let last_embed_dim = embed_dims[embed_dims.len() - 1];
|
||||
let norm_head = candle_nn::layer_norm(last_embed_dim, 1e-5, vb.pp("norm_head"))?;
|
||||
let head = candle_nn::linear(last_embed_dim, num_classes, vb.pp("head"))?;
|
||||
// let norm_head = candle_nn::layer_norm(last_embed_dim, 1e-5, vb.pp("norm_head"))?;
|
||||
// let head = candle_nn::linear(last_embed_dim, num_classes, vb.pp("head"))?;
|
||||
let neck_conv1 =
|
||||
candle_nn::conv2d_no_bias(last_embed_dim, 256, 1, Default::default(), vb.pp("neck.0"))?;
|
||||
let neck_ln1 = crate::LayerNorm2d::new(256, 1e-6, vb.pp("neck.1"))?;
|
||||
@ -525,8 +529,6 @@ impl TinyViT {
|
||||
patch_embed,
|
||||
layer0,
|
||||
layers,
|
||||
norm_head,
|
||||
head,
|
||||
neck_conv1,
|
||||
neck_ln1,
|
||||
neck_conv2,
|
||||
@ -537,7 +539,8 @@ impl TinyViT {
|
||||
|
||||
impl Module for TinyViT {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = self.patch_embed.forward(xs)?;
|
||||
let xs = self.patch_embed.forward(xs)?;
|
||||
let mut xs = self.layer0.forward(&xs)?;
|
||||
for layer in self.layers.iter() {
|
||||
xs = layer.forward(&xs)?
|
||||
}
|
||||
@ -551,7 +554,7 @@ impl Module for TinyViT {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn tiny_vit_5m_224(vb: VarBuilder) -> Result<TinyViT> {
|
||||
pub fn tiny_vit_5m(vb: VarBuilder) -> Result<TinyViT> {
|
||||
TinyViT::new(
|
||||
/* embed_dims */ &[64, 128, 160, 320],
|
||||
/* depths */ &[2, 2, 6, 2],
|
||||
|
Reference in New Issue
Block a user