Move the weight bits in a separate module. (#295)

This commit is contained in:
Laurent Mazare
2023-08-01 10:37:06 +01:00
committed by GitHub
parent 614f911e9e
commit 75e0448114
3 changed files with 168 additions and 164 deletions

View File

@ -1,177 +1,21 @@
// https://github.com/karpathy/llama2.c
#![allow(dead_code)]
#![allow(unused)]
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
mod model;
mod weights;
use clap::{Parser, Subcommand};
use anyhow::{Error as E, Result};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
use candle_nn::{Embedding, Linear, VarBuilder};
use byteorder::{LittleEndian, ReadBytesExt};
use candle::{IndexOp, Tensor};
use candle_transformers::generation::LogitsProcessor;
use std::io::Write;
use tokenizers::Tokenizer;
use model::{Config, Llama};
struct TransformerWeights {
// token embedding table
token_embedding_table: Tensor, // (vocab_size, dim)
// weights for rmsnorms
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
rms_ffn_weight: Tensor, // (layer, dim)
// weights for matmuls
wq: Tensor, // (layer, dim, dim)
wk: Tensor, // (layer, dim, dim)
wv: Tensor, // (layer, dim, dim)
wo: Tensor, // (layer, dim, dim)
// weights for ffn
w1: Tensor, // (layer, hidden_dim, dim)
w2: Tensor, // (layer, dim, hidden_dim)
w3: Tensor, // (layer, hidden_dim, dim)
// final rmsnorm
rms_final_weight: Tensor, // (dim,)
// freq_cis for RoPE relatively positional embeddings
freq_cis_real: Tensor, // (seq_len, head_size/2)
freq_cis_imag: Tensor, // (seq_len, head_size/2)
}
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
let mut buf = [0u8; 4];
r.read_exact(&mut buf)?;
Ok(i32::from_le_bytes(buf))
}
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
r: &mut R,
shape: S,
dev: &Device,
) -> Result<Tensor> {
let shape = shape.into();
let mut data_t = vec![0f32; shape.elem_count()];
r.read_f32_into::<LittleEndian>(&mut data_t)?;
let tensor = Tensor::from_vec(data_t, shape, dev)?;
Ok(tensor)
}
impl Config {
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
let dim = read_i32(r)? as usize;
let hidden_dim = read_i32(r)? as usize;
let n_layers = read_i32(r)? as usize;
let n_heads = read_i32(r)? as usize;
let n_kv_heads = read_i32(r)? as usize;
let vocab_size = read_i32(r)? as usize;
let seq_len = read_i32(r)? as usize;
Ok(Self {
dim,
hidden_dim,
n_layers,
n_heads,
n_kv_heads,
vocab_size,
seq_len,
norm_eps: 1e-5,
})
}
fn head_size(&self) -> usize {
self.dim / self.n_heads
}
}
impl TransformerWeights {
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
let rms_final_weight = read_tensor(r, c.dim, dev)?;
let head_size = c.head_size();
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
Ok(Self {
token_embedding_table,
rms_att_weight,
wq,
wk,
wv,
wo,
rms_ffn_weight,
w1,
w2,
w3,
rms_final_weight,
freq_cis_real,
freq_cis_imag,
})
}
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
let mut ws = std::collections::HashMap::new();
let mut insert = |name: &str, t: Tensor| {
ws.insert(name.to_string(), t);
};
insert("rot.freq_cis_real", self.freq_cis_real.clone());
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
insert(
"model.embed_tokens.weight",
self.token_embedding_table.clone(),
);
insert("lm_head.weight", self.token_embedding_table.clone());
insert("model.norm.weight", self.rms_final_weight.clone());
for layer in 0..cfg.n_layers {
ws.insert(
format!("model.layers.{layer}.self_attn.q_proj.weight"),
self.wq.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.k_proj.weight"),
self.wk.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.v_proj.weight"),
self.wv.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.self_attn.o_proj.weight"),
self.wo.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.gate_proj.weight"),
self.w1.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.down_proj.weight"),
self.w2.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.mlp.up_proj.weight"),
self.w3.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.input_layernorm.weight"),
self.rms_att_weight.i(layer)?,
);
ws.insert(
format!("model.layers.{layer}.post_attention_layernorm.weight"),
self.rms_ffn_weight.i(layer)?,
);
}
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
Ok(vb)
}
}
use weights::TransformerWeights;
#[derive(Parser, Debug, Clone)]
struct InferenceCmd {
@ -308,6 +152,8 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
tokens.concat()
}
Some(pretokenized_dir) => {
// Use shard 0 for the test split, similar to llama2.c
// https://github.com/karpathy/llama2.c/blob/ce05cc28cf1e3560b873bb21837638a434520a67/tinystories.py#L121
let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin");
let bytes = std::fs::read(path)?;
// Tokens are encoded as u16.
@ -377,7 +223,6 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
if tokens.len() >= model.config.seq_len {
break;
}
let start_gen = std::time::Instant::now();
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;