mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 02:58:50 +00:00
Move the weight bits in a separate module. (#295)
This commit is contained in:
@ -1,177 +1,21 @@
|
|||||||
// https://github.com/karpathy/llama2.c
|
// https://github.com/karpathy/llama2.c
|
||||||
#![allow(dead_code)]
|
|
||||||
#![allow(unused)]
|
|
||||||
|
|
||||||
#[cfg(feature = "mkl")]
|
#[cfg(feature = "mkl")]
|
||||||
extern crate intel_mkl_src;
|
extern crate intel_mkl_src;
|
||||||
|
|
||||||
mod model;
|
mod model;
|
||||||
|
mod weights;
|
||||||
use clap::{Parser, Subcommand};
|
use clap::{Parser, Subcommand};
|
||||||
|
|
||||||
use anyhow::{Error as E, Result};
|
use anyhow::{Error as E, Result};
|
||||||
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
|
use byteorder::{LittleEndian, ReadBytesExt};
|
||||||
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
|
use candle::{IndexOp, Tensor};
|
||||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
|
||||||
use candle_transformers::generation::LogitsProcessor;
|
use candle_transformers::generation::LogitsProcessor;
|
||||||
use std::io::Write;
|
use std::io::Write;
|
||||||
use tokenizers::Tokenizer;
|
use tokenizers::Tokenizer;
|
||||||
|
|
||||||
use model::{Config, Llama};
|
use model::{Config, Llama};
|
||||||
|
use weights::TransformerWeights;
|
||||||
struct TransformerWeights {
|
|
||||||
// token embedding table
|
|
||||||
token_embedding_table: Tensor, // (vocab_size, dim)
|
|
||||||
// weights for rmsnorms
|
|
||||||
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
|
||||||
rms_ffn_weight: Tensor, // (layer, dim)
|
|
||||||
// weights for matmuls
|
|
||||||
wq: Tensor, // (layer, dim, dim)
|
|
||||||
wk: Tensor, // (layer, dim, dim)
|
|
||||||
wv: Tensor, // (layer, dim, dim)
|
|
||||||
wo: Tensor, // (layer, dim, dim)
|
|
||||||
// weights for ffn
|
|
||||||
w1: Tensor, // (layer, hidden_dim, dim)
|
|
||||||
w2: Tensor, // (layer, dim, hidden_dim)
|
|
||||||
w3: Tensor, // (layer, hidden_dim, dim)
|
|
||||||
// final rmsnorm
|
|
||||||
rms_final_weight: Tensor, // (dim,)
|
|
||||||
// freq_cis for RoPE relatively positional embeddings
|
|
||||||
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
|
||||||
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
|
||||||
let mut buf = [0u8; 4];
|
|
||||||
r.read_exact(&mut buf)?;
|
|
||||||
Ok(i32::from_le_bytes(buf))
|
|
||||||
}
|
|
||||||
|
|
||||||
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
|
||||||
r: &mut R,
|
|
||||||
shape: S,
|
|
||||||
dev: &Device,
|
|
||||||
) -> Result<Tensor> {
|
|
||||||
let shape = shape.into();
|
|
||||||
let mut data_t = vec![0f32; shape.elem_count()];
|
|
||||||
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
|
||||||
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
|
||||||
Ok(tensor)
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Config {
|
|
||||||
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
|
||||||
let dim = read_i32(r)? as usize;
|
|
||||||
let hidden_dim = read_i32(r)? as usize;
|
|
||||||
let n_layers = read_i32(r)? as usize;
|
|
||||||
let n_heads = read_i32(r)? as usize;
|
|
||||||
let n_kv_heads = read_i32(r)? as usize;
|
|
||||||
let vocab_size = read_i32(r)? as usize;
|
|
||||||
let seq_len = read_i32(r)? as usize;
|
|
||||||
Ok(Self {
|
|
||||||
dim,
|
|
||||||
hidden_dim,
|
|
||||||
n_layers,
|
|
||||||
n_heads,
|
|
||||||
n_kv_heads,
|
|
||||||
vocab_size,
|
|
||||||
seq_len,
|
|
||||||
norm_eps: 1e-5,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn head_size(&self) -> usize {
|
|
||||||
self.dim / self.n_heads
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl TransformerWeights {
|
|
||||||
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
|
||||||
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
|
||||||
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
||||||
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
||||||
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
||||||
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
||||||
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
|
||||||
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
|
||||||
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
||||||
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
|
||||||
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
|
||||||
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
|
||||||
let head_size = c.head_size();
|
|
||||||
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
||||||
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
|
||||||
Ok(Self {
|
|
||||||
token_embedding_table,
|
|
||||||
rms_att_weight,
|
|
||||||
wq,
|
|
||||||
wk,
|
|
||||||
wv,
|
|
||||||
wo,
|
|
||||||
rms_ffn_weight,
|
|
||||||
w1,
|
|
||||||
w2,
|
|
||||||
w3,
|
|
||||||
rms_final_weight,
|
|
||||||
freq_cis_real,
|
|
||||||
freq_cis_imag,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
|
||||||
let mut ws = std::collections::HashMap::new();
|
|
||||||
let mut insert = |name: &str, t: Tensor| {
|
|
||||||
ws.insert(name.to_string(), t);
|
|
||||||
};
|
|
||||||
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
|
||||||
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
|
||||||
insert(
|
|
||||||
"model.embed_tokens.weight",
|
|
||||||
self.token_embedding_table.clone(),
|
|
||||||
);
|
|
||||||
insert("lm_head.weight", self.token_embedding_table.clone());
|
|
||||||
insert("model.norm.weight", self.rms_final_weight.clone());
|
|
||||||
for layer in 0..cfg.n_layers {
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
|
||||||
self.wq.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
|
||||||
self.wk.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
|
||||||
self.wv.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
|
||||||
self.wo.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
|
||||||
self.w1.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
|
||||||
self.w2.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
|
||||||
self.w3.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.input_layernorm.weight"),
|
|
||||||
self.rms_att_weight.i(layer)?,
|
|
||||||
);
|
|
||||||
ws.insert(
|
|
||||||
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
|
||||||
self.rms_ffn_weight.i(layer)?,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
|
||||||
Ok(vb)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Parser, Debug, Clone)]
|
#[derive(Parser, Debug, Clone)]
|
||||||
struct InferenceCmd {
|
struct InferenceCmd {
|
||||||
@ -308,6 +152,8 @@ fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
|
|||||||
tokens.concat()
|
tokens.concat()
|
||||||
}
|
}
|
||||||
Some(pretokenized_dir) => {
|
Some(pretokenized_dir) => {
|
||||||
|
// Use shard 0 for the test split, similar to llama2.c
|
||||||
|
// https://github.com/karpathy/llama2.c/blob/ce05cc28cf1e3560b873bb21837638a434520a67/tinystories.py#L121
|
||||||
let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin");
|
let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin");
|
||||||
let bytes = std::fs::read(path)?;
|
let bytes = std::fs::read(path)?;
|
||||||
// Tokens are encoded as u16.
|
// Tokens are encoded as u16.
|
||||||
@ -377,7 +223,6 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
|
|||||||
if tokens.len() >= model.config.seq_len {
|
if tokens.len() >= model.config.seq_len {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
let start_gen = std::time::Instant::now();
|
|
||||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||||
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
|
||||||
|
@ -106,7 +106,6 @@ struct CausalSelfAttention {
|
|||||||
n_key_value_head: usize,
|
n_key_value_head: usize,
|
||||||
head_dim: usize,
|
head_dim: usize,
|
||||||
cache: Cache,
|
cache: Cache,
|
||||||
max_seq_len: usize,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl CausalSelfAttention {
|
impl CausalSelfAttention {
|
||||||
@ -198,7 +197,6 @@ impl CausalSelfAttention {
|
|||||||
n_key_value_head: cfg.n_kv_heads,
|
n_key_value_head: cfg.n_kv_heads,
|
||||||
head_dim: cfg.dim / cfg.n_heads,
|
head_dim: cfg.dim / cfg.n_heads,
|
||||||
cache: cache.clone(),
|
cache: cache.clone(),
|
||||||
max_seq_len: cfg.seq_len,
|
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -291,7 +289,7 @@ pub struct Llama {
|
|||||||
|
|
||||||
impl Llama {
|
impl Llama {
|
||||||
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||||
let (_b_sz, seq_len) = x.dims2()?;
|
let (_b_sz, _seq_len) = x.dims2()?;
|
||||||
let mut x = self.wte.forward(x)?;
|
let mut x = self.wte.forward(x)?;
|
||||||
for (block_idx, block) in self.blocks.iter().enumerate() {
|
for (block_idx, block) in self.blocks.iter().enumerate() {
|
||||||
x = block.forward(&x, index_pos, block_idx)?;
|
x = block.forward(&x, index_pos, block_idx)?;
|
||||||
|
161
candle-examples/examples/llama2-c/weights.rs
Normal file
161
candle-examples/examples/llama2-c/weights.rs
Normal file
@ -0,0 +1,161 @@
|
|||||||
|
use anyhow::Result;
|
||||||
|
use byteorder::{LittleEndian, ReadBytesExt};
|
||||||
|
use candle::{DType, Device, IndexOp, Shape, Tensor};
|
||||||
|
use candle_nn::VarBuilder;
|
||||||
|
|
||||||
|
use crate::model::Config;
|
||||||
|
|
||||||
|
pub struct TransformerWeights {
|
||||||
|
// token embedding table
|
||||||
|
token_embedding_table: Tensor, // (vocab_size, dim)
|
||||||
|
// weights for rmsnorms
|
||||||
|
rms_att_weight: Tensor, // (layer, dim) rmsnorm weights
|
||||||
|
rms_ffn_weight: Tensor, // (layer, dim)
|
||||||
|
// weights for matmuls
|
||||||
|
wq: Tensor, // (layer, dim, dim)
|
||||||
|
wk: Tensor, // (layer, dim, dim)
|
||||||
|
wv: Tensor, // (layer, dim, dim)
|
||||||
|
wo: Tensor, // (layer, dim, dim)
|
||||||
|
// weights for ffn
|
||||||
|
w1: Tensor, // (layer, hidden_dim, dim)
|
||||||
|
w2: Tensor, // (layer, dim, hidden_dim)
|
||||||
|
w3: Tensor, // (layer, hidden_dim, dim)
|
||||||
|
// final rmsnorm
|
||||||
|
rms_final_weight: Tensor, // (dim,)
|
||||||
|
// freq_cis for RoPE relatively positional embeddings
|
||||||
|
freq_cis_real: Tensor, // (seq_len, head_size/2)
|
||||||
|
freq_cis_imag: Tensor, // (seq_len, head_size/2)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
|
||||||
|
let mut buf = [0u8; 4];
|
||||||
|
r.read_exact(&mut buf)?;
|
||||||
|
Ok(i32::from_le_bytes(buf))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn read_tensor<R: std::io::Read, S: Into<Shape>>(
|
||||||
|
r: &mut R,
|
||||||
|
shape: S,
|
||||||
|
dev: &Device,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let shape = shape.into();
|
||||||
|
let mut data_t = vec![0f32; shape.elem_count()];
|
||||||
|
r.read_f32_into::<LittleEndian>(&mut data_t)?;
|
||||||
|
let tensor = Tensor::from_vec(data_t, shape, dev)?;
|
||||||
|
Ok(tensor)
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Config {
|
||||||
|
pub fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
|
||||||
|
let dim = read_i32(r)? as usize;
|
||||||
|
let hidden_dim = read_i32(r)? as usize;
|
||||||
|
let n_layers = read_i32(r)? as usize;
|
||||||
|
let n_heads = read_i32(r)? as usize;
|
||||||
|
let n_kv_heads = read_i32(r)? as usize;
|
||||||
|
let vocab_size = read_i32(r)? as usize;
|
||||||
|
let seq_len = read_i32(r)? as usize;
|
||||||
|
Ok(Self {
|
||||||
|
dim,
|
||||||
|
hidden_dim,
|
||||||
|
n_layers,
|
||||||
|
n_heads,
|
||||||
|
n_kv_heads,
|
||||||
|
vocab_size,
|
||||||
|
seq_len,
|
||||||
|
norm_eps: 1e-5,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn head_size(&self) -> usize {
|
||||||
|
self.dim / self.n_heads
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl TransformerWeights {
|
||||||
|
pub fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
|
||||||
|
let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
|
||||||
|
let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||||
|
let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
|
let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
|
let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
|
let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
|
||||||
|
let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
|
||||||
|
let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||||
|
let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
|
||||||
|
let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
|
||||||
|
let rms_final_weight = read_tensor(r, c.dim, dev)?;
|
||||||
|
let head_size = c.head_size();
|
||||||
|
let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||||
|
let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
|
||||||
|
Ok(Self {
|
||||||
|
token_embedding_table,
|
||||||
|
rms_att_weight,
|
||||||
|
wq,
|
||||||
|
wk,
|
||||||
|
wv,
|
||||||
|
wo,
|
||||||
|
rms_ffn_weight,
|
||||||
|
w1,
|
||||||
|
w2,
|
||||||
|
w3,
|
||||||
|
rms_final_weight,
|
||||||
|
freq_cis_real,
|
||||||
|
freq_cis_imag,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> {
|
||||||
|
let mut ws = std::collections::HashMap::new();
|
||||||
|
let mut insert = |name: &str, t: Tensor| {
|
||||||
|
ws.insert(name.to_string(), t);
|
||||||
|
};
|
||||||
|
insert("rot.freq_cis_real", self.freq_cis_real.clone());
|
||||||
|
insert("rot.freq_cis_imag", self.freq_cis_imag.clone());
|
||||||
|
insert(
|
||||||
|
"model.embed_tokens.weight",
|
||||||
|
self.token_embedding_table.clone(),
|
||||||
|
);
|
||||||
|
insert("lm_head.weight", self.token_embedding_table.clone());
|
||||||
|
insert("model.norm.weight", self.rms_final_weight.clone());
|
||||||
|
for layer in 0..cfg.n_layers {
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.self_attn.q_proj.weight"),
|
||||||
|
self.wq.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.self_attn.k_proj.weight"),
|
||||||
|
self.wk.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.self_attn.v_proj.weight"),
|
||||||
|
self.wv.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.self_attn.o_proj.weight"),
|
||||||
|
self.wo.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.mlp.gate_proj.weight"),
|
||||||
|
self.w1.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.mlp.down_proj.weight"),
|
||||||
|
self.w2.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.mlp.up_proj.weight"),
|
||||||
|
self.w3.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.input_layernorm.weight"),
|
||||||
|
self.rms_att_weight.i(layer)?,
|
||||||
|
);
|
||||||
|
ws.insert(
|
||||||
|
format!("model.layers.{layer}.post_attention_layernorm.weight"),
|
||||||
|
self.rms_ffn_weight.i(layer)?,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
let vb = VarBuilder::from_tensors(ws, DType::F32, device);
|
||||||
|
Ok(vb)
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user