mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
[Book] Add small error management + start training (with generic dataset
inclusion).
This commit is contained in:
@ -12,7 +12,11 @@
|
||||
|
||||
- [Running a model](inference/README.md)
|
||||
- [Using the hub](inference/hub.md)
|
||||
- [Error management]()
|
||||
- [Error management](error_manage.md)
|
||||
- [Training](training/README.md)
|
||||
- [MNIST]()
|
||||
- [Fine-tuning]()
|
||||
- [Serialization]()
|
||||
- [Advanced Cuda usage]()
|
||||
- [Writing a custom kernel]()
|
||||
- [Porting a custom kernel]()
|
||||
@ -21,7 +25,3 @@
|
||||
- [Creating a WASM app]()
|
||||
- [Creating a REST api webserver]()
|
||||
- [Creating a desktop Tauri app]()
|
||||
- [Training]()
|
||||
- [MNIST]()
|
||||
- [Fine-tuning]()
|
||||
- [Serialization]()
|
||||
|
@ -1 +1,17 @@
|
||||
# Training
|
||||
|
||||
|
||||
Training starts with data. We're going to use the huggingface hub and
|
||||
start with the Hello world dataset of machine learning, MNIST.
|
||||
|
||||
Let's start with downloading `MNIST` from [huggingface](https://huggingface.co/datasets/mnist).
|
||||
|
||||
|
||||
```rust
|
||||
use candle_datasets::from_hub;
|
||||
|
||||
|
||||
let dataset = from_hub("mnist")?;
|
||||
```
|
||||
|
||||
This uses the standardized `parquet` files from the `refs/convert/parquet` branch on every dataset.
|
||||
|
Reference in New Issue
Block a user