mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Also fix the aspect ratio in the wasm example. (#556)
* Also fix the aspect ratio in the wasm example. * Add the yolo lib. * Update the build script.
This commit is contained in:
@ -27,46 +27,62 @@ pub struct ModelData {
|
||||
pub weights: Vec<u8>,
|
||||
}
|
||||
|
||||
struct Model {
|
||||
pub struct Model {
|
||||
model: YoloV8,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn run(
|
||||
&self,
|
||||
_link: &WorkerLink<Worker>,
|
||||
_id: HandlerId,
|
||||
image_data: Vec<u8>,
|
||||
) -> Result<Vec<Vec<Bbox>>> {
|
||||
pub fn run(&self, image_data: Vec<u8>) -> Result<Vec<Vec<Bbox>>> {
|
||||
console_log!("image data: {}", image_data.len());
|
||||
let image_data = std::io::Cursor::new(image_data);
|
||||
let original_image = image::io::Reader::new(image_data)
|
||||
.with_guessed_format()?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?;
|
||||
let image = {
|
||||
let data = original_image
|
||||
.resize_exact(640, 640, image::imageops::FilterType::Triangle)
|
||||
.to_rgb8()
|
||||
.into_raw();
|
||||
Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))?
|
||||
let (width, height) = {
|
||||
let w = original_image.width() as usize;
|
||||
let h = original_image.height() as usize;
|
||||
if w < h {
|
||||
let w = w * 640 / h;
|
||||
// Sizes have to be divisible by 32.
|
||||
(w / 32 * 32, 640)
|
||||
} else {
|
||||
let h = h * 640 / w;
|
||||
(640, h / 32 * 32)
|
||||
}
|
||||
};
|
||||
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image)?.squeeze(0)?;
|
||||
let image_t = {
|
||||
let img = original_image.resize_exact(
|
||||
width as u32,
|
||||
height as u32,
|
||||
image::imageops::FilterType::CatmullRom,
|
||||
);
|
||||
let data = img.to_rgb8().into_raw();
|
||||
Tensor::from_vec(
|
||||
data,
|
||||
(img.height() as usize, img.width() as usize, 3),
|
||||
&Device::Cpu,
|
||||
)?
|
||||
.permute((2, 0, 1))?
|
||||
};
|
||||
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report(&predictions, original_image, 640, 640)?;
|
||||
let bboxes = report(&predictions, original_image, width, height)?;
|
||||
Ok(bboxes)
|
||||
}
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn load(md: ModelData) -> Result<Self> {
|
||||
pub fn load_(weights: &[u8]) -> Result<Self> {
|
||||
let dev = &Device::Cpu;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(&md.weights)?;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
||||
Ok(Self { model })
|
||||
}
|
||||
|
||||
pub fn load(md: ModelData) -> Result<Self> {
|
||||
Self::load_(&md.weights)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Worker {
|
||||
@ -112,9 +128,7 @@ impl yew_agent::Worker for Worker {
|
||||
WorkerInput::Run(image_data) => match &mut self.model {
|
||||
None => Err("model has not been set yet".to_string()),
|
||||
Some(model) => {
|
||||
let result = model
|
||||
.run(&self.link, id, image_data)
|
||||
.map_err(|e| e.to_string());
|
||||
let result = model.run(image_data).map_err(|e| e.to_string());
|
||||
Ok(WorkerOutput::ProcessingDone(result))
|
||||
}
|
||||
},
|
||||
|
Reference in New Issue
Block a user