mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Also fix the aspect ratio in the wasm example. (#556)
* Also fix the aspect ratio in the wasm example. * Add the yolo lib. * Update the build script.
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@ -25,6 +25,7 @@ flamegraph.svg
|
|||||||
*.swp
|
*.swp
|
||||||
trace-*.json
|
trace-*.json
|
||||||
|
|
||||||
|
candle-wasm-examples/*/build
|
||||||
candle-wasm-examples/*/*.bin
|
candle-wasm-examples/*/*.bin
|
||||||
candle-wasm-examples/*/*.jpeg
|
candle-wasm-examples/*/*.jpeg
|
||||||
candle-wasm-examples/*/*.wav
|
candle-wasm-examples/*/*.wav
|
||||||
|
2
candle-wasm-examples/yolo/build-lib.sh
Normal file
2
candle-wasm-examples/yolo/build-lib.sh
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
cargo build --target wasm32-unknown-unknown --release
|
||||||
|
wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
|
25
candle-wasm-examples/yolo/src/bin/m.rs
Normal file
25
candle-wasm-examples/yolo/src/bin/m.rs
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
use candle_wasm_example_yolo::worker::Model as M;
|
||||||
|
use wasm_bindgen::prelude::*;
|
||||||
|
|
||||||
|
#[wasm_bindgen]
|
||||||
|
pub struct Model {
|
||||||
|
inner: M,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[wasm_bindgen]
|
||||||
|
impl Model {
|
||||||
|
#[wasm_bindgen(constructor)]
|
||||||
|
pub fn new(data: Vec<u8>) -> Result<Model, JsError> {
|
||||||
|
let inner = M::load_(&data)?;
|
||||||
|
Ok(Self { inner })
|
||||||
|
}
|
||||||
|
|
||||||
|
#[wasm_bindgen]
|
||||||
|
pub fn run(&self, image: Vec<u8>) -> Result<String, JsError> {
|
||||||
|
let boxes = self.inner.run(image)?;
|
||||||
|
let json = serde_json::to_string(&boxes)?;
|
||||||
|
Ok(json)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() {}
|
@ -1,6 +1,6 @@
|
|||||||
mod app;
|
mod app;
|
||||||
mod coco_classes;
|
mod coco_classes;
|
||||||
mod model;
|
mod model;
|
||||||
mod worker;
|
pub mod worker;
|
||||||
pub use app::App;
|
pub use app::App;
|
||||||
pub use worker::Worker;
|
pub use worker::Worker;
|
||||||
|
@ -5,8 +5,8 @@ use candle_nn::{
|
|||||||
};
|
};
|
||||||
use image::DynamicImage;
|
use image::DynamicImage;
|
||||||
|
|
||||||
const CONFIDENCE_THRESHOLD: f32 = 0.5;
|
const CONFIDENCE_THRESHOLD: f32 = 0.25;
|
||||||
const NMS_THRESHOLD: f32 = 0.4;
|
const NMS_THRESHOLD: f32 = 0.45;
|
||||||
|
|
||||||
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
|
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
|
||||||
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
|
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
|
||||||
|
@ -27,46 +27,62 @@ pub struct ModelData {
|
|||||||
pub weights: Vec<u8>,
|
pub weights: Vec<u8>,
|
||||||
}
|
}
|
||||||
|
|
||||||
struct Model {
|
pub struct Model {
|
||||||
model: YoloV8,
|
model: YoloV8,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Model {
|
impl Model {
|
||||||
fn run(
|
pub fn run(&self, image_data: Vec<u8>) -> Result<Vec<Vec<Bbox>>> {
|
||||||
&self,
|
|
||||||
_link: &WorkerLink<Worker>,
|
|
||||||
_id: HandlerId,
|
|
||||||
image_data: Vec<u8>,
|
|
||||||
) -> Result<Vec<Vec<Bbox>>> {
|
|
||||||
console_log!("image data: {}", image_data.len());
|
console_log!("image data: {}", image_data.len());
|
||||||
let image_data = std::io::Cursor::new(image_data);
|
let image_data = std::io::Cursor::new(image_data);
|
||||||
let original_image = image::io::Reader::new(image_data)
|
let original_image = image::io::Reader::new(image_data)
|
||||||
.with_guessed_format()?
|
.with_guessed_format()?
|
||||||
.decode()
|
.decode()
|
||||||
.map_err(candle::Error::wrap)?;
|
.map_err(candle::Error::wrap)?;
|
||||||
let image = {
|
let (width, height) = {
|
||||||
let data = original_image
|
let w = original_image.width() as usize;
|
||||||
.resize_exact(640, 640, image::imageops::FilterType::Triangle)
|
let h = original_image.height() as usize;
|
||||||
.to_rgb8()
|
if w < h {
|
||||||
.into_raw();
|
let w = w * 640 / h;
|
||||||
Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))?
|
// Sizes have to be divisible by 32.
|
||||||
|
(w / 32 * 32, 640)
|
||||||
|
} else {
|
||||||
|
let h = h * 640 / w;
|
||||||
|
(640, h / 32 * 32)
|
||||||
|
}
|
||||||
};
|
};
|
||||||
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
let image_t = {
|
||||||
let predictions = self.model.forward(&image)?.squeeze(0)?;
|
let img = original_image.resize_exact(
|
||||||
|
width as u32,
|
||||||
|
height as u32,
|
||||||
|
image::imageops::FilterType::CatmullRom,
|
||||||
|
);
|
||||||
|
let data = img.to_rgb8().into_raw();
|
||||||
|
Tensor::from_vec(
|
||||||
|
data,
|
||||||
|
(img.height() as usize, img.width() as usize, 3),
|
||||||
|
&Device::Cpu,
|
||||||
|
)?
|
||||||
|
.permute((2, 0, 1))?
|
||||||
|
};
|
||||||
|
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||||
|
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||||
console_log!("generated predictions {predictions:?}");
|
console_log!("generated predictions {predictions:?}");
|
||||||
let bboxes = report(&predictions, original_image, 640, 640)?;
|
let bboxes = report(&predictions, original_image, width, height)?;
|
||||||
Ok(bboxes)
|
Ok(bboxes)
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
impl Model {
|
pub fn load_(weights: &[u8]) -> Result<Self> {
|
||||||
fn load(md: ModelData) -> Result<Self> {
|
|
||||||
let dev = &Device::Cpu;
|
let dev = &Device::Cpu;
|
||||||
let weights = safetensors::tensor::SafeTensors::deserialize(&md.weights)?;
|
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
|
||||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||||
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
||||||
Ok(Self { model })
|
Ok(Self { model })
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn load(md: ModelData) -> Result<Self> {
|
||||||
|
Self::load_(&md.weights)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub struct Worker {
|
pub struct Worker {
|
||||||
@ -112,9 +128,7 @@ impl yew_agent::Worker for Worker {
|
|||||||
WorkerInput::Run(image_data) => match &mut self.model {
|
WorkerInput::Run(image_data) => match &mut self.model {
|
||||||
None => Err("model has not been set yet".to_string()),
|
None => Err("model has not been set yet".to_string()),
|
||||||
Some(model) => {
|
Some(model) => {
|
||||||
let result = model
|
let result = model.run(image_data).map_err(|e| e.to_string());
|
||||||
.run(&self.link, id, image_data)
|
|
||||||
.map_err(|e| e.to_string());
|
|
||||||
Ok(WorkerOutput::ProcessingDone(result))
|
Ok(WorkerOutput::ProcessingDone(result))
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
Reference in New Issue
Block a user