mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
Add logsumexp function (#1424)
This commit is contained in:
@ -2565,6 +2565,13 @@ impl Tensor {
|
|||||||
}
|
}
|
||||||
mask.where_cond(/* on_true= */ &src, /* on_false= */ self)
|
mask.where_cond(/* on_true= */ &src, /* on_false= */ self)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Returns log(sum(exp(tensor), dim)).
|
||||||
|
pub fn logsumexp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
|
||||||
|
let exp = self.exp()?;
|
||||||
|
let sum = exp.sum(sum_dims)?;
|
||||||
|
sum.log()
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
macro_rules! bin_trait {
|
macro_rules! bin_trait {
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
use candle_core::{test_device, test_utils, DType, Device, IndexOp, Result, Tensor};
|
use candle_core::{test_device, test_utils, D, DType, Device, IndexOp, Result, Tensor};
|
||||||
|
|
||||||
fn zeros(device: &Device) -> Result<()> {
|
fn zeros(device: &Device) -> Result<()> {
|
||||||
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
|
let tensor = Tensor::zeros((5, 2), DType::F32, device)?;
|
||||||
@ -1221,3 +1221,28 @@ fn cumsum() -> Result<()> {
|
|||||||
);
|
);
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// A helper function for floating point comparison. Both a and b must be 1D Tensor and contains the same amount of data.
|
||||||
|
/// Assertion passes if the difference of all pairs of a and b is smaller than epsilon.
|
||||||
|
fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) {
|
||||||
|
let a_vec: Vec<f64> = a.to_vec1().unwrap();
|
||||||
|
let b_vec: Vec<f64> = b.to_vec1().unwrap();
|
||||||
|
|
||||||
|
assert_eq!(a_vec.len(), b_vec.len());
|
||||||
|
for (a, b) in a_vec.iter().zip(b_vec.iter()) {
|
||||||
|
assert!((a - b).abs() < epsilon);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn logsumexp() -> Result<()> {
|
||||||
|
let input = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
|
||||||
|
let output = input.logsumexp(D::Minus1)?;
|
||||||
|
|
||||||
|
// Expectation get from pytorch.
|
||||||
|
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
|
||||||
|
|
||||||
|
assert_close(&output, &expected, 0.00001);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
Reference in New Issue
Block a user