Abstract the gradient storage.

This commit is contained in:
laurent
2023-06-21 14:29:48 +01:00
parent 68f525f321
commit 7adffafeda
5 changed files with 87 additions and 37 deletions

View File

@ -13,9 +13,14 @@ readme = "README.md"
[dependencies] [dependencies]
safetensors = "0.3.1" safetensors = "0.3.1"
thiserror = "1" thiserror = "1"
cudarc = { version = "0.9.9", optional = true }
[dev-dependencies] [dev-dependencies]
anyhow = "1" anyhow = "1"
clap = { version = "4.2.4", features = ["derive"] } clap = { version = "4.2.4", features = ["derive"] }
rand = "0.8.5" rand = "0.8.5"
tokenizers = "0.13.3" tokenizers = "0.13.3"
[features]
default = []
cuda = ["dep:cudarc"]

View File

@ -54,27 +54,36 @@ impl<S: crate::WithDType, const N: usize, const M: usize> NdArray for &[[S; N];
} }
impl Device { impl Device {
pub(crate) fn ones(&self, shape: &Shape, dtype: DType) -> Storage { pub(crate) fn ones(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
match self { match self {
Device::Cpu => Storage::Cpu(CpuStorage::ones_impl(shape, dtype)), Device::Cpu => {
let storage = Storage::Cpu(CpuStorage::ones_impl(shape, dtype));
Ok(storage)
}
Device::Cuda { gpu_id: _ } => { Device::Cuda { gpu_id: _ } => {
todo!() todo!()
} }
} }
} }
pub(crate) fn zeros(&self, shape: &Shape, dtype: DType) -> Storage { pub(crate) fn zeros(&self, shape: &Shape, dtype: DType) -> Result<Storage> {
match self { match self {
Device::Cpu => Storage::Cpu(CpuStorage::zeros_impl(shape, dtype)), Device::Cpu => {
let storage = Storage::Cpu(CpuStorage::zeros_impl(shape, dtype));
Ok(storage)
}
Device::Cuda { gpu_id: _ } => { Device::Cuda { gpu_id: _ } => {
todo!() todo!()
} }
} }
} }
pub(crate) fn tensor<A: NdArray>(&self, array: A) -> Storage { pub(crate) fn tensor<A: NdArray>(&self, array: A) -> Result<Storage> {
match self { match self {
Device::Cpu => Storage::Cpu(array.to_cpu_storage()), Device::Cpu => {
let storage = Storage::Cpu(array.to_cpu_storage());
Ok(storage)
}
Device::Cuda { gpu_id: _ } => { Device::Cuda { gpu_id: _ } => {
todo!() todo!()
} }

View File

@ -86,9 +86,9 @@ impl Tensor {
dtype: DType, dtype: DType,
device: Device, device: Device,
is_variable: bool, is_variable: bool,
) -> Self { ) -> Result<Self> {
let shape = shape.into(); let shape = shape.into();
let storage = device.ones(&shape, dtype); let storage = device.ones(&shape, dtype)?;
let stride = shape.stride_contiguous(); let stride = shape.stride_contiguous();
let tensor_ = Tensor_ { let tensor_ = Tensor_ {
id: TensorId::new(), id: TensorId::new(),
@ -98,18 +98,18 @@ impl Tensor {
op: None, op: None,
is_variable, is_variable,
}; };
Self(Arc::new(tensor_)) Ok(Self(Arc::new(tensor_)))
} }
pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Self { pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Result<Self> {
Self::ones_impl(shape, dtype, device, false) Self::ones_impl(shape, dtype, device, false)
} }
pub fn ones_var<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Self { pub fn ones_var<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Result<Self> {
Self::ones_impl(shape, dtype, device, true) Self::ones_impl(shape, dtype, device, true)
} }
pub fn ones_like(&self) -> Self { pub fn ones_like(&self) -> Result<Self> {
Tensor::ones(self.shape(), self.dtype(), self.device()) Tensor::ones(self.shape(), self.dtype(), self.device())
} }
@ -118,9 +118,9 @@ impl Tensor {
dtype: DType, dtype: DType,
device: Device, device: Device,
is_variable: bool, is_variable: bool,
) -> Self { ) -> Result<Self> {
let shape = shape.into(); let shape = shape.into();
let storage = device.zeros(&shape, dtype); let storage = device.zeros(&shape, dtype)?;
let stride = shape.stride_contiguous(); let stride = shape.stride_contiguous();
let tensor_ = Tensor_ { let tensor_ = Tensor_ {
id: TensorId::new(), id: TensorId::new(),
@ -130,18 +130,18 @@ impl Tensor {
op: None, op: None,
is_variable, is_variable,
}; };
Self(Arc::new(tensor_)) Ok(Self(Arc::new(tensor_)))
} }
pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Self { pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Result<Self> {
Self::zeros_impl(shape, dtype, device, false) Self::zeros_impl(shape, dtype, device, false)
} }
pub fn zeros_var<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Self { pub fn zeros_var<S: Into<Shape>>(shape: S, dtype: DType, device: Device) -> Result<Self> {
Self::zeros_impl(shape, dtype, device, true) Self::zeros_impl(shape, dtype, device, true)
} }
pub fn zeros_like(&self) -> Self { pub fn zeros_like(&self) -> Result<Self> {
Tensor::zeros(self.shape(), self.dtype(), self.device()) Tensor::zeros(self.shape(), self.dtype(), self.device())
} }
@ -151,7 +151,7 @@ impl Tensor {
is_variable: bool, is_variable: bool,
) -> Result<Self> { ) -> Result<Self> {
let shape = array.shape()?; let shape = array.shape()?;
let storage = device.tensor(array); let storage = device.tensor(array)?;
let stride = shape.stride_contiguous(); let stride = shape.stride_contiguous();
let tensor_ = Tensor_ { let tensor_ = Tensor_ {
id: TensorId::new(), id: TensorId::new(),
@ -376,16 +376,16 @@ impl Tensor {
nodes nodes
} }
pub fn backward(&self) -> Result<HashMap<TensorId, Tensor>> { pub fn backward(&self) -> Result<GradStore> {
let sorted_nodes = self.sorted_nodes(); let sorted_nodes = self.sorted_nodes();
println!("{}", sorted_nodes.len()); println!("{}", sorted_nodes.len());
let mut grads = HashMap::new(); let mut grads = GradStore::new();
grads.insert(self.id, self.ones_like()); grads.insert(self, self.ones_like()?);
for node in sorted_nodes.iter() { for node in sorted_nodes.iter() {
if node.is_variable { if node.is_variable {
continue; continue;
} }
let grad = grads.remove(&node.id).unwrap(); let grad = grads.remove(node).unwrap();
// TODO: We should perform all these operations in place (or at least not track the // TODO: We should perform all these operations in place (or at least not track the
// whole graph). // whole graph).
// The only drawback would be if we wanted to support grad of grad but this is out of // The only drawback would be if we wanted to support grad of grad but this is out of
@ -393,51 +393,51 @@ impl Tensor {
if let Some(op) = &node.op { if let Some(op) = &node.op {
match op { match op {
Op::Add(lhs, rhs) => { Op::Add(lhs, rhs) => {
let lhs_sum_grad = grads.entry(lhs.id).or_insert_with(|| lhs.zeros_like()); let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&grad)?; *lhs_sum_grad = lhs_sum_grad.add(&grad)?;
let rhs_sum_grad = grads.entry(rhs.id).or_insert_with(|| rhs.zeros_like()); let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&grad)?; *rhs_sum_grad = rhs_sum_grad.add(&grad)?;
} }
Op::Sub(lhs, rhs) => { Op::Sub(lhs, rhs) => {
let lhs_sum_grad = grads.entry(lhs.id).or_insert_with(|| lhs.zeros_like()); let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&grad)?; *lhs_sum_grad = lhs_sum_grad.add(&grad)?;
let rhs_sum_grad = grads.entry(rhs.id).or_insert_with(|| rhs.zeros_like()); let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&grad.neg()?)?; *rhs_sum_grad = rhs_sum_grad.add(&grad.neg()?)?;
} }
Op::Mul(lhs, rhs) => { Op::Mul(lhs, rhs) => {
let lhs_grad = grad.mul(rhs)?; let lhs_grad = grad.mul(rhs)?;
let lhs_sum_grad = grads.entry(lhs.id).or_insert_with(|| lhs.zeros_like()); let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?; *lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = grad.mul(lhs)?; let rhs_grad = grad.mul(lhs)?;
let rhs_sum_grad = grads.entry(rhs.id).or_insert_with(|| rhs.zeros_like()); let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?; *rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
} }
Op::Div(lhs, rhs) => { Op::Div(lhs, rhs) => {
let lhs_grad = grad.div(rhs)?; let lhs_grad = grad.div(rhs)?;
let lhs_sum_grad = grads.entry(lhs.id).or_insert_with(|| lhs.zeros_like()); let lhs_sum_grad = grads.or_insert(lhs)?;
*lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?; *lhs_sum_grad = lhs_sum_grad.add(&lhs_grad)?;
let rhs_grad = grad.mul(lhs)?.div(&rhs.sqr()?)?; let rhs_grad = grad.mul(lhs)?.div(&rhs.sqr()?)?;
let rhs_sum_grad = grads.entry(rhs.id).or_insert_with(|| rhs.zeros_like()); let rhs_sum_grad = grads.or_insert(rhs)?;
*rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?; *rhs_sum_grad = rhs_sum_grad.add(&rhs_grad)?;
} }
Op::Affine { arg, mul, .. } => { Op::Affine { arg, mul, .. } => {
let arg_grad = grad.affine(*mul, 0.)?; let arg_grad = grad.affine(*mul, 0.)?;
let sum_grad = grads.entry(arg.id).or_insert_with(|| arg.zeros_like()); let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)? *sum_grad = sum_grad.add(&arg_grad)?
} }
Op::Neg(arg) => { Op::Neg(arg) => {
let arg_grad = grad.neg()?; let arg_grad = grad.neg()?;
let sum_grad = grads.entry(arg.id).or_insert_with(|| arg.zeros_like()); let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)? *sum_grad = sum_grad.add(&arg_grad)?
} }
Op::Sqr(arg) => { Op::Sqr(arg) => {
let arg_grad = arg.mul(&grad)?.affine(2., 0.)?; let arg_grad = arg.mul(&grad)?.affine(2., 0.)?;
let sum_grad = grads.entry(arg.id).or_insert_with(|| arg.zeros_like()); let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)? *sum_grad = sum_grad.add(&arg_grad)?
} }
Op::Sqrt(arg) => { Op::Sqrt(arg) => {
let arg_grad = grad.div(arg)?.affine(0.5, 0.)?; let arg_grad = grad.div(arg)?.affine(0.5, 0.)?;
let sum_grad = grads.entry(arg.id).or_insert_with(|| arg.zeros_like()); let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&arg_grad)? *sum_grad = sum_grad.add(&arg_grad)?
} }
}; };
@ -503,3 +503,39 @@ bin_trait!(Add, add, |_| 1., |v| v);
bin_trait!(Sub, sub, |_| 1., |v: f64| -v); bin_trait!(Sub, sub, |_| 1., |v: f64| -v);
bin_trait!(Mul, mul, |v| v, |_| 0.); bin_trait!(Mul, mul, |v| v, |_| 0.);
bin_trait!(Div, div, |v| 1. / v, |_| 0.); bin_trait!(Div, div, |v| 1. / v, |_| 0.);
pub struct GradStore(HashMap<TensorId, Tensor>);
impl GradStore {
fn new() -> Self {
GradStore(HashMap::new())
}
pub fn get_id(&self, id: TensorId) -> Option<&Tensor> {
self.0.get(&id)
}
pub fn get(&self, tensor: &Tensor) -> Option<&Tensor> {
self.0.get(&tensor.id)
}
pub fn remove(&mut self, tensor: &Tensor) -> Option<Tensor> {
self.0.remove(&tensor.id)
}
pub fn insert(&mut self, tensor: &Tensor, grad: Tensor) -> Option<Tensor> {
self.0.insert(tensor.id, grad)
}
fn or_insert(&mut self, tensor: &Tensor) -> Result<&mut Tensor> {
use std::collections::hash_map::Entry;
let grad = match self.0.entry(tensor.id) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let grad = tensor.zeros_like()?;
entry.insert(grad)
}
};
Ok(grad)
}
}

View File

@ -6,7 +6,7 @@ fn simple_grad() -> Result<()> {
let x = Tensor::var(&[3f32, 1., 4.], Device::Cpu)?; let x = Tensor::var(&[3f32, 1., 4.], Device::Cpu)?;
let y = (((&x * &x)? + &x * 5f64)? + 4f64)?; let y = (((&x * &x)? + &x * 5f64)? + 4f64)?;
let grads = y.backward()?; let grads = y.backward()?;
let grad_x = grads.get(&x.id()).context("no grad for x")?; let grad_x = grads.get(&x).context("no grad for x")?;
assert_eq!(x.to_vec1::<f32>()?, [3., 1., 4.]); assert_eq!(x.to_vec1::<f32>()?, [3., 1., 4.]);
// y = x^2 + 5.x + 4 // y = x^2 + 5.x + 4
assert_eq!(y.to_vec1::<f32>()?, [28., 10., 40.]); assert_eq!(y.to_vec1::<f32>()?, [28., 10., 40.]);

View File

@ -2,7 +2,7 @@ use candle::{DType, Device, Result, Tensor};
#[test] #[test]
fn zeros() -> Result<()> { fn zeros() -> Result<()> {
let tensor = Tensor::zeros((5, 2), DType::F32, Device::Cpu); let tensor = Tensor::zeros((5, 2), DType::F32, Device::Cpu)?;
let (dim1, dim2) = tensor.shape().r2()?; let (dim1, dim2) = tensor.shape().r2()?;
assert_eq!(dim1, 5); assert_eq!(dim1, 5);
assert_eq!(dim2, 2); assert_eq!(dim2, 2);