mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
More segment-anything again. (#764)
* More segment-anything again. * Transformer block forward. * Two-ways transformer. * Position embeddings. * Sketch the prompt encoder. * More prompt-encoder. * More prompt-encoder. * Add the main sam module. * Embed the transformer. * And hook the transformer forward step. * Build the model. * Handle the global attn indexes. * Get the model to load.
This commit is contained in:
@ -0,0 +1,192 @@
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
|
||||
|
||||
#[derive(Debug)]
|
||||
struct PostionEmbeddingRandom {
|
||||
positional_encoding_gaussian_matrix: Tensor,
|
||||
}
|
||||
|
||||
impl PostionEmbeddingRandom {
|
||||
fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> {
|
||||
let positional_encoding_gaussian_matrix =
|
||||
vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?;
|
||||
Ok(Self {
|
||||
positional_encoding_gaussian_matrix,
|
||||
})
|
||||
}
|
||||
|
||||
fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
|
||||
let coords = coords.affine(2., -1.)?;
|
||||
let coords = coords.matmul(&self.positional_encoding_gaussian_matrix)?;
|
||||
let coords = (coords * (2. * std::f64::consts::PI))?;
|
||||
Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
|
||||
}
|
||||
|
||||
fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
|
||||
let device = self.positional_encoding_gaussian_matrix.device();
|
||||
let grid = Tensor::ones((h, w), DType::F32, device)?;
|
||||
// TODO: cumsum
|
||||
let x_embed = (&grid - 0.5)?;
|
||||
// TODO: cumsum
|
||||
let y_embed = (&grid - 0.5)?;
|
||||
let x_embed = (x_embed / w as f64)?;
|
||||
let y_embed = (y_embed / h as f64)?;
|
||||
let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
|
||||
self.pe_encoding(&coords)?.permute((2, 0, 1))
|
||||
}
|
||||
|
||||
fn forward_with_coords(
|
||||
&self,
|
||||
coords_input: &Tensor,
|
||||
image_size: (usize, usize),
|
||||
) -> Result<Tensor> {
|
||||
let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?;
|
||||
let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?;
|
||||
let c = coords_input.dim(D::Minus1)?;
|
||||
let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?;
|
||||
let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?;
|
||||
self.pe_encoding(&coords)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct PromptEncoder {
|
||||
pe_layer: PostionEmbeddingRandom,
|
||||
point_embeddings: Vec<candle_nn::Embedding>,
|
||||
not_a_point_embed: candle_nn::Embedding,
|
||||
mask_downscaling_conv1: candle_nn::Conv2d,
|
||||
mask_downscaling_ln1: LayerNorm,
|
||||
mask_downscaling_conv2: candle_nn::Conv2d,
|
||||
mask_downscaling_ln2: LayerNorm,
|
||||
mask_downscaling_conv3: candle_nn::Conv2d,
|
||||
no_mask_embed: candle_nn::Embedding,
|
||||
image_embedding_size: (usize, usize),
|
||||
input_image_size: (usize, usize),
|
||||
}
|
||||
|
||||
impl PromptEncoder {
|
||||
pub fn new(
|
||||
embed_dim: usize,
|
||||
image_embedding_size: (usize, usize),
|
||||
input_image_size: (usize, usize),
|
||||
mask_in_chans: usize,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let num_points_embeddings = 4;
|
||||
let pe_layer = PostionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?;
|
||||
let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?;
|
||||
let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?;
|
||||
let cfg = candle_nn::Conv2dConfig {
|
||||
stride: 2,
|
||||
..Default::default()
|
||||
};
|
||||
let mask_downscaling_conv1 =
|
||||
candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?;
|
||||
let mask_downscaling_conv2 = candle_nn::conv2d(
|
||||
mask_in_chans / 4,
|
||||
mask_in_chans,
|
||||
2,
|
||||
cfg,
|
||||
vb.pp("mask_downscaling.3"),
|
||||
)?;
|
||||
let mask_downscaling_conv3 = candle_nn::conv2d(
|
||||
mask_in_chans,
|
||||
embed_dim,
|
||||
1,
|
||||
Default::default(),
|
||||
vb.pp("mask_downscaling.6"),
|
||||
)?;
|
||||
let mask_downscaling_ln1 =
|
||||
layer_norm(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
|
||||
let mask_downscaling_ln2 = layer_norm(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
|
||||
let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
|
||||
let vb_e = vb.pp("point_embeddings");
|
||||
for i in 0..num_points_embeddings {
|
||||
let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?;
|
||||
point_embeddings.push(emb)
|
||||
}
|
||||
Ok(Self {
|
||||
pe_layer,
|
||||
point_embeddings,
|
||||
not_a_point_embed,
|
||||
mask_downscaling_conv1,
|
||||
mask_downscaling_ln1,
|
||||
mask_downscaling_conv2,
|
||||
mask_downscaling_ln2,
|
||||
mask_downscaling_conv3,
|
||||
no_mask_embed,
|
||||
image_embedding_size,
|
||||
input_image_size,
|
||||
})
|
||||
}
|
||||
|
||||
fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
|
||||
masks
|
||||
.apply(&self.mask_downscaling_conv1)?
|
||||
.apply(&self.mask_downscaling_ln1)?
|
||||
.gelu()?
|
||||
.apply(&self.mask_downscaling_conv2)?
|
||||
.apply(&self.mask_downscaling_ln2)?
|
||||
.gelu()?
|
||||
.apply(&self.mask_downscaling_conv3)
|
||||
}
|
||||
|
||||
fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
|
||||
let points = (points + 0.5)?;
|
||||
let points = if pad { todo!() } else { points };
|
||||
let point_embedding = self
|
||||
.pe_layer
|
||||
.forward_with_coords(&points, self.input_image_size)?;
|
||||
// TODO: tweak based on labels.
|
||||
Ok(point_embedding)
|
||||
}
|
||||
|
||||
fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
|
||||
let boxes = (boxes + 0.5)?;
|
||||
let coords = boxes.reshape((boxes.elem_count() / 4, 2, 2))?;
|
||||
let corner_embedding = self
|
||||
.pe_layer
|
||||
.forward_with_coords(&coords, self.input_image_size)?;
|
||||
let ce1 = corner_embedding.i((.., 0))?;
|
||||
let ce2 = corner_embedding.i((.., 1))?;
|
||||
let ce1 = (ce1 + self.point_embeddings[2].embeddings())?;
|
||||
let ce2 = (ce2 + self.point_embeddings[3].embeddings())?;
|
||||
Tensor::cat(&[&ce1, &ce2], 1)
|
||||
}
|
||||
|
||||
fn forward(
|
||||
&self,
|
||||
points: Option<(&Tensor, &Tensor)>,
|
||||
boxes: Option<&Tensor>,
|
||||
masks: Option<&Tensor>,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let se_points = match points {
|
||||
Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?),
|
||||
None => None,
|
||||
};
|
||||
let se_boxes = match boxes {
|
||||
Some(boxes) => Some(self.embed_boxes(boxes)?),
|
||||
None => None,
|
||||
};
|
||||
let sparse_embeddings = match (se_points, se_boxes) {
|
||||
(Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
|
||||
(Some(se_points), None) => se_points,
|
||||
(None, Some(se_boxes)) => se_boxes,
|
||||
(None, None) => Tensor::zeros(1, DType::F32, &candle::Device::Cpu)?,
|
||||
};
|
||||
|
||||
let dense_embeddings = match masks {
|
||||
None => {
|
||||
let emb = self.no_mask_embed.embeddings();
|
||||
emb.reshape((1, emb.elem_count(), 1, 1))?.expand((
|
||||
1,
|
||||
0,
|
||||
self.image_embedding_size.0,
|
||||
self.image_embedding_size.1,
|
||||
))?
|
||||
}
|
||||
Some(masks) => self.embed_masks(masks)?,
|
||||
};
|
||||
Ok((sparse_embeddings, dense_embeddings))
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user