More segment-anything again. (#764)

* More segment-anything again.

* Transformer block forward.

* Two-ways transformer.

* Position embeddings.

* Sketch the prompt encoder.

* More prompt-encoder.

* More prompt-encoder.

* Add the main sam module.

* Embed the transformer.

* And hook the transformer forward step.

* Build the model.

* Handle the global attn indexes.

* Get the model to load.
This commit is contained in:
Laurent Mazare
2023-09-07 13:06:55 +02:00
committed by GitHub
parent 8c991df394
commit 7b50f3e106
6 changed files with 454 additions and 20 deletions

View File

@ -75,3 +75,146 @@ struct TwoWayAttentionBlock {
cross_attn_image_to_token: Attention,
skip_first_layer_pe: bool,
}
impl TwoWayAttentionBlock {
fn new(
embedding_dim: usize,
num_heads: usize,
mlp_dim: usize,
skip_first_layer_pe: bool,
vb: VarBuilder,
) -> Result<Self> {
let self_attn = Attention::new(embedding_dim, num_heads, 1, vb.pp("self_attn"))?;
let norm1 = layer_norm(embedding_dim, 1e-5, vb.pp("norm1"))?;
let norm2 = layer_norm(embedding_dim, 1e-5, vb.pp("norm2"))?;
let norm3 = layer_norm(embedding_dim, 1e-5, vb.pp("norm3"))?;
let norm4 = layer_norm(embedding_dim, 1e-5, vb.pp("norm4"))?;
let self_attn = Attention::new(embedding_dim, num_heads, 1, vb.pp("self_attn"))?;
let cross_attn_token_to_image = Attention::new(
embedding_dim,
num_heads,
2,
vb.pp("cross_attn_token_to_image"),
)?;
let cross_attn_image_to_token = Attention::new(
embedding_dim,
num_heads,
2,
vb.pp("cross_attn_image_to_token"),
)?;
// TODO: use relu in this mlp
let mlp = crate::MlpBlock::new(embedding_dim, mlp_dim, vb.pp("mlp"))?;
Ok(Self {
self_attn,
norm1,
cross_attn_image_to_token,
norm2,
mlp,
norm3,
norm4,
cross_attn_token_to_image,
skip_first_layer_pe,
})
}
fn forward(
&self,
queries: &Tensor,
keys: &Tensor,
query_pe: &Tensor,
key_pe: &Tensor,
) -> Result<(Tensor, Tensor)> {
// Self attention block
let queries = if self.skip_first_layer_pe {
self.self_attn.forward(queries, keys, queries)?
} else {
let q = (queries + query_pe)?;
let attn_out = self.self_attn.forward(&q, &q, queries)?;
(queries + attn_out)?
};
let queries = self.norm1.forward(&queries)?;
// Cross attention block, tokens attending to image embedding
let q = (&queries + query_pe)?;
let k = (keys + key_pe)?;
let attn_out = self.cross_attn_token_to_image.forward(&q, &k, keys)?;
let queries = (&queries + attn_out)?;
let queries = self.norm2.forward(&queries)?;
// MLP block
let mlp_out = self.mlp.forward(&queries);
let queries = (queries + mlp_out)?;
let queries = self.norm3.forward(&queries)?;
// Cross attention block, image embedding attending to tokens
let q = (&queries + query_pe)?;
let k = (keys + key_pe)?;
let attn_out = self.cross_attn_image_to_token.forward(&k, &q, &queries)?;
let keys = (keys + attn_out)?;
let keys = self.norm4.forward(&keys)?;
Ok((queries, keys))
}
}
#[derive(Debug)]
pub struct TwoWayTransformer {
layers: Vec<TwoWayAttentionBlock>,
final_attn_token_to_image: Attention,
norm_final_attn: LayerNorm,
}
impl TwoWayTransformer {
pub fn new(
depth: usize,
embedding_dim: usize,
num_heads: usize,
mlp_dim: usize,
vb: VarBuilder,
) -> Result<Self> {
let vb_l = vb.pp("layers");
let mut layers = Vec::with_capacity(depth);
for i in 0..depth {
let layer =
TwoWayAttentionBlock::new(embedding_dim, num_heads, mlp_dim, i == 0, vb_l.pp(i))?;
layers.push(layer)
}
let final_attn_token_to_image = Attention::new(
embedding_dim,
num_heads,
2,
vb.pp("final_attn_token_to_image"),
)?;
let norm_final_attn = layer_norm(embedding_dim, 1e-5, vb.pp("norm_final_attn"))?;
Ok(Self {
layers,
final_attn_token_to_image,
norm_final_attn,
})
}
pub fn forward(
&self,
image_embedding: &Tensor,
image_pe: &Tensor,
point_embedding: &Tensor,
) -> Result<(Tensor, Tensor)> {
let (bs, c, h, w) = image_embedding.dims4()?;
let image_embedding = image_embedding.flatten_from(2)?.permute((0, 2, 1))?;
let image_pe = image_pe.flatten_from(2)?.permute((0, 2, 1))?;
let mut queries = point_embedding.clone();
let mut keys = image_embedding;
for layer in self.layers.iter() {
(queries, keys) = layer.forward(&queries, &keys, point_embedding, &image_pe)?
}
let q = (&queries + point_embedding)?;
let k = (&keys + image_pe)?;
let attn_out = self.final_attn_token_to_image.forward(&q, &k, &keys)?;
let queries = (queries + attn_out)?.apply(&self.norm_final_attn)?;
Ok((queries, keys))
}
}