Removing inner dependency on safetensors.

This commit is contained in:
Nicolas Patry
2023-07-26 11:16:04 +02:00
parent 1553b58fe5
commit 7c7e6ba201
4 changed files with 30 additions and 32 deletions

View File

@ -1,7 +1,6 @@
use crate::{DType, Device, Error, Result, Tensor, WithDType}; use crate::{DType, Device, Error, Result, Tensor, WithDType};
use safetensors::slice::SliceIterator;
use safetensors::tensor as st; use safetensors::tensor as st;
use safetensors::tensor::{Dtype, SafeTensors}; use safetensors::tensor::SafeTensors;
use std::borrow::Cow; use std::borrow::Cow;
impl From<DType> for st::Dtype { impl From<DType> for st::Dtype {
@ -118,26 +117,24 @@ impl<'a> Load for st::TensorView<'a> {
} }
impl Tensor { impl Tensor {
pub fn from_safetensors_slice( pub fn from_raw_buffer(
iterator: SliceIterator, data: &[u8],
dtype: Dtype, dtype: DType,
shape: &[usize], shape: &[usize],
device: &Device, device: &Device,
) -> Result<Self> { ) -> Result<Self> {
let data: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
match dtype { match dtype {
st::Dtype::U8 => convert_slice::<u8>(&data, shape, device), DType::U8 => convert_slice::<u8>(data, shape, device),
st::Dtype::U32 => convert_slice::<u8>(&data, shape, device), DType::U32 => convert_slice::<u32>(data, shape, device),
st::Dtype::BF16 => convert_slice::<half::bf16>(&data, shape, device), DType::BF16 => convert_slice::<half::bf16>(data, shape, device),
st::Dtype::F16 => convert_slice::<half::f16>(&data, shape, device), DType::F16 => convert_slice::<half::f16>(data, shape, device),
st::Dtype::F32 => convert_slice::<f32>(&data, shape, device), DType::F32 => convert_slice::<f32>(data, shape, device),
st::Dtype::F64 => convert_slice::<f64>(&data, shape, device), DType::F64 => convert_slice::<f64>(data, shape, device),
dtype => Err(Error::UnsupportedSafeTensorDtype(dtype)),
} }
} }
} }
pub fn convert(view: &st::TensorView<'_>, device: &Device) -> Result<Tensor> { fn convert(view: &st::TensorView<'_>, device: &Device) -> Result<Tensor> {
match view.dtype() { match view.dtype() {
st::Dtype::U8 => convert_::<u8>(view, device), st::Dtype::U8 => convert_::<u8>(view, device),
st::Dtype::U32 => convert_::<u8>(view, device), st::Dtype::U32 => convert_::<u8>(view, device),
@ -149,7 +146,7 @@ pub fn convert(view: &st::TensorView<'_>, device: &Device) -> Result<Tensor> {
} }
} }
pub fn convert_back(tensor: &Tensor) -> Result<Vec<u8>> { fn convert_back(tensor: &Tensor) -> Result<Vec<u8>> {
// TODO: This makes an unnecessary copy when the tensor is on the cpu. // TODO: This makes an unnecessary copy when the tensor is on the cpu.
let tensor = tensor.flatten_all()?; let tensor = tensor.flatten_all()?;
match tensor.dtype() { match tensor.dtype() {

View File

@ -4,7 +4,6 @@ use candle_nn::{Embedding, Linear, VarBuilder};
use cudarc::nccl::safe::{Comm, ReduceOp}; use cudarc::nccl::safe::{Comm, ReduceOp};
use half::f16; use half::f16;
use std::collections::HashMap; use std::collections::HashMap;
use std::rc::Rc;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use super::MAX_SEQ_LEN; use super::MAX_SEQ_LEN;
@ -24,11 +23,11 @@ impl TensorParallelColumnLinear {
struct TensorParallelRowLinear { struct TensorParallelRowLinear {
linear: Linear, linear: Linear,
comm: Rc<Comm>, comm: Arc<Comm>,
} }
struct AllReduce { struct AllReduce {
comm: Rc<Comm>, comm: Arc<Comm>,
} }
impl CustomOp1 for AllReduce { impl CustomOp1 for AllReduce {
@ -61,12 +60,12 @@ impl CustomOp1 for AllReduce {
} }
} }
fn all_reduce_sum(x: &Tensor, comm: &Rc<Comm>) -> Result<Tensor> { fn all_reduce_sum(x: &Tensor, comm: &Arc<Comm>) -> Result<Tensor> {
x.custom_op1(AllReduce { comm: comm.clone() }) x.custom_op1(AllReduce { comm: comm.clone() })
} }
impl TensorParallelRowLinear { impl TensorParallelRowLinear {
fn new(linear: Linear, comm: Rc<Comm>) -> Self { fn new(linear: Linear, comm: Arc<Comm>) -> Self {
Self { linear, comm } Self { linear, comm }
} }
fn forward(&self, x: &Tensor) -> Result<Tensor> { fn forward(&self, x: &Tensor) -> Result<Tensor> {
@ -76,14 +75,14 @@ impl TensorParallelRowLinear {
} }
impl TensorParallelColumnLinear { impl TensorParallelColumnLinear {
fn load(vb: VarBuilder, comm: Rc<Comm>) -> Result<Self> { fn load(vb: VarBuilder, comm: Arc<Comm>) -> Result<Self> {
let rank = comm.rank(); let rank = comm.rank();
let size = comm.world_size(); let size = comm.world_size();
let weight = vb.get_sharded("weight", 0, rank, size)?; let weight = vb.get_sharded("weight", 0, rank, size)?;
Ok(Self::new(Linear::new(weight, None))) Ok(Self::new(Linear::new(weight, None)))
} }
fn load_multi(vb: VarBuilder, prefixes: &[&str], comm: Rc<Comm>) -> Result<Self> { fn load_multi(vb: VarBuilder, prefixes: &[&str], comm: Arc<Comm>) -> Result<Self> {
let rank = comm.rank(); let rank = comm.rank();
let size = comm.world_size(); let size = comm.world_size();
let weights: Vec<_> = prefixes let weights: Vec<_> = prefixes
@ -96,7 +95,7 @@ impl TensorParallelColumnLinear {
} }
impl TensorParallelRowLinear { impl TensorParallelRowLinear {
fn load(vb: VarBuilder, comm: Rc<Comm>) -> Result<Self> { fn load(vb: VarBuilder, comm: Arc<Comm>) -> Result<Self> {
let rank = comm.rank(); let rank = comm.rank();
let size = comm.world_size(); let size = comm.world_size();
let weight = vb.get_sharded("weight", 1, rank, size)?; let weight = vb.get_sharded("weight", 1, rank, size)?;
@ -339,7 +338,7 @@ impl CausalSelfAttention {
} }
} }
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> { fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Arc<Comm>) -> Result<Self> {
let qkv_proj = TensorParallelColumnLinear::load_multi( let qkv_proj = TensorParallelColumnLinear::load_multi(
vb.clone(), vb.clone(),
&["q_proj", "k_proj", "v_proj"], &["q_proj", "k_proj", "v_proj"],
@ -388,7 +387,7 @@ impl Mlp {
self.c_proj.forward(&x) self.c_proj.forward(&x)
} }
fn load(vb: VarBuilder, _cfg: &Config, comm: Rc<Comm>) -> Result<Self> { fn load(vb: VarBuilder, _cfg: &Config, comm: Arc<Comm>) -> Result<Self> {
let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?; let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?;
let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?; let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?;
let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm.clone())?; let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm.clone())?;
@ -422,7 +421,7 @@ impl Block {
Ok(x) Ok(x)
} }
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> { fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Arc<Comm>) -> Result<Self> {
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg, comm.clone())?; let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg, comm.clone())?;
let mlp = Mlp::load(vb.pp("mlp"), cfg, comm.clone())?; let mlp = Mlp::load(vb.pp("mlp"), cfg, comm.clone())?;
let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?; let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?;
@ -466,7 +465,7 @@ impl Llama {
logits.to_dtype(DType::F32) logits.to_dtype(DType::F32)
} }
pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> { pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Arc<Comm>) -> Result<Self> {
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?; let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?; let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?; let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?;

View File

@ -1,6 +1,5 @@
use candle::{safetensors::Load, DType, Device, Error, Result, Shape, Tensor}; use candle::{safetensors::Load, DType, Device, Error, Result, Shape, Tensor};
use safetensors::slice::IndexOp; use safetensors::{slice::IndexOp, tensor::SafeTensors};
use safetensors::tensor::SafeTensors;
use std::collections::HashMap; use std::collections::HashMap;
use std::sync::Arc; use std::sync::Arc;
@ -70,7 +69,7 @@ impl<'a> TensorData<'a> {
#[derive(Clone)] #[derive(Clone)]
pub struct VarBuilder<'a> { pub struct VarBuilder<'a> {
data: Arc<TensorData<'a>>, data: Arc<TensorData<'a>>,
pub path: Vec<String>, path: Vec<String>,
} }
impl<'a> VarBuilder<'a> { impl<'a> VarBuilder<'a> {
@ -179,7 +178,10 @@ impl<'a> VarBuilder<'a> {
shape[dim] = block_size; shape[dim] = block_size;
Tensor::from_safetensors_slice(iterator, dtype, &shape, &data.device)? let dtype: DType = dtype.try_into()?;
let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
Tensor::from_raw_buffer(&raw, dtype, &shape, &data.device)?
} }
_ => unimplemented!(), _ => unimplemented!(),
}; };

View File

@ -15,7 +15,6 @@ candle = { path = "../../candle-core" }
candle-nn = { path = "../../candle-nn" } candle-nn = { path = "../../candle-nn" }
num-traits = { workspace = true } num-traits = { workspace = true }
tokenizers = { workspace = true, features = ["unstable_wasm"] } tokenizers = { workspace = true, features = ["unstable_wasm"] }
safetensors = { workspace = true }
# App crates. # App crates.
anyhow = { workspace = true } anyhow = { workspace = true }
@ -24,6 +23,7 @@ rand = { workspace = true }
serde = { workspace = true } serde = { workspace = true }
serde_json = { workspace = true } serde_json = { workspace = true }
wav = { workspace = true } wav = { workspace = true }
safetensors = { workspace = true }
# Wasm specific crates. # Wasm specific crates.
getrandom = { version = "0.2", features = ["js"] } getrandom = { version = "0.2", features = ["js"] }