Use flash-attn in gemma. (#2195)

* Use flash-attn in gemma.

* Fix flash-attn for head dim 256.
This commit is contained in:
Laurent Mazare
2024-05-18 19:18:59 +02:00
committed by GitHub
parent eefc1c77ef
commit 7ebc3548e1
4 changed files with 55 additions and 20 deletions

View File

@ -193,6 +193,9 @@ struct Args {
/// The model to use. /// The model to use.
#[arg(long, default_value = "2b")] #[arg(long, default_value = "2b")]
which: Which, which: Which,
#[arg(long)]
use_flash_attn: bool,
} }
fn main() -> Result<()> { fn main() -> Result<()> {
@ -270,7 +273,7 @@ fn main() -> Result<()> {
DType::F32 DType::F32
}; };
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?; let model = Model::new(args.use_flash_attn, &config, vb)?;
println!("loaded the model in {:?}", start.elapsed()); println!("loaded the model in {:?}", start.elapsed());

View File

@ -42,6 +42,10 @@ void run_flash_fwd(Flash_fwd_params &params, cudaStream_t stream) {
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, false, true, true, false>; // auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, false, true, true, false>;
// printf("IsEvenMNConst = %d, IsEvenKConst = %d, Is_local = %d, Is_causal = %d, ReturnSoftmaxConst = %d, Is_dropout = %d\n", int(IsEvenMNConst), int(IsEvenKConst), int(Is_local), int(Is_causal), int(ReturnSoftmaxConst), int(Is_dropout)); // printf("IsEvenMNConst = %d, IsEvenKConst = %d, Is_local = %d, Is_causal = %d, ReturnSoftmaxConst = %d, Is_dropout = %d\n", int(IsEvenMNConst), int(IsEvenKConst), int(Is_local), int(Is_causal), int(ReturnSoftmaxConst), int(Is_dropout));
// auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>; // auto kernel = &flash_fwd_kernel<Kernel_traits, false, Is_causal, false, true, true, false>;
if (smem_size >= 48 * 1024) {
cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);
}
// int ctas_per_sm; // int ctas_per_sm;
// cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor( // cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
// &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size); // &ctas_per_sm, kernel, Kernel_traits::kNThreads, smem_size);

View File

@ -139,7 +139,9 @@ impl FlashAttn {
let elem_count = out_shape.elem_count(); let elem_count = out_shape.elem_count();
let dst = unsafe { dev.alloc::<T>(elem_count) }.w()?; let dst = unsafe { dev.alloc::<T>(elem_count) }.w()?;
let softmax_lse = dev.alloc_zeros::<f32>(b_sz * num_heads * seqlen_q).w()?; let softmax_lse = dev
.alloc_zeros::<f32>(b_sz * 128 * num_heads * seqlen_q)
.w()?;
let is_bf16 = if is_bf16 { 1 } else { 0 }; let is_bf16 = if is_bf16 { 1 } else { 0 };

View File

@ -73,13 +73,6 @@ struct RotaryEmbedding {
cos: Tensor, cos: Tensor,
} }
fn rotate_half(xs: &Tensor) -> Result<Tensor> {
let last_dim = xs.dim(D::Minus1)?;
let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
}
impl RotaryEmbedding { impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> { fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.head_dim; let dim = cfg.head_dim;
@ -94,7 +87,6 @@ impl RotaryEmbedding {
.to_dtype(dtype)? .to_dtype(dtype)?
.reshape((max_seq_len, 1))?; .reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?; let freqs = t.matmul(&inv_freq)?;
let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
Ok(Self { Ok(Self {
sin: freqs.sin()?, sin: freqs.sin()?,
cos: freqs.cos()?, cos: freqs.cos()?,
@ -110,10 +102,8 @@ impl RotaryEmbedding {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim) let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
Ok((q_embed, k_embed)) Ok((q_embed, k_embed))
} }
} }
@ -163,10 +153,16 @@ struct Attention {
head_dim: usize, head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>, rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>, kv_cache: Option<(Tensor, Tensor)>,
use_flash_attn: bool,
} }
impl Attention { impl Attention {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { fn new(
rotary_emb: Arc<RotaryEmbedding>,
use_flash_attn: bool,
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let hidden_sz = cfg.hidden_size; let hidden_sz = cfg.hidden_size;
let num_heads = cfg.num_attention_heads; let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads; let num_kv_heads = cfg.num_key_value_heads;
@ -188,6 +184,7 @@ impl Attention {
head_dim, head_dim,
rotary_emb, rotary_emb,
kv_cache: None, kv_cache: None,
use_flash_attn,
}) })
} }
@ -231,7 +228,14 @@ impl Attention {
let value_states = let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
let attn_output = { let attn_output = if self.use_flash_attn {
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
let q = query_states.transpose(1, 2)?;
let k = key_states.transpose(1, 2)?;
let v = value_states.transpose(1, 2)?;
let scale = 1f32 / (self.head_dim as f32).sqrt();
flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)?
} else {
let scale = 1f64 / f64::sqrt(self.head_dim as f64); let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
@ -253,6 +257,22 @@ impl Attention {
} }
} }
#[cfg(feature = "flash-attn")]
fn flash_attn(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
}
#[cfg(not(feature = "flash-attn"))]
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
unimplemented!("compile with '--features flash-attn'")
}
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
struct DecoderLayer { struct DecoderLayer {
self_attn: Attention, self_attn: Attention,
@ -262,8 +282,13 @@ struct DecoderLayer {
} }
impl DecoderLayer { impl DecoderLayer {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { fn new(
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; rotary_emb: Arc<RotaryEmbedding>,
use_flash_attn: bool,
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let input_layernorm = let input_layernorm =
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
@ -312,7 +337,7 @@ pub struct Model {
} }
impl Model { impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model"); let vb_m = vb.pp("model");
let embed_tokens = let embed_tokens =
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
@ -320,7 +345,8 @@ impl Model {
let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers"); let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers { for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; let layer =
DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?;
layers.push(layer) layers.push(layer)
} }
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;