Co-authored-by: v-espitalier <>
This commit is contained in:
v-espitalier
2024-07-01 22:11:48 +02:00
committed by GitHub
parent 74e9e41911
commit 7f1ba8038c
4 changed files with 467 additions and 0 deletions

View File

@ -0,0 +1,20 @@
# candle-beit
[Beit](https://arxiv.org/abs/2106.08254) is a computer vision model.
In this example, it is used as an ImageNet classifier: the model returns the
probability for the image to belong to each of the 1000 ImageNet categories.
## Running some example
```bash
cargo run --example beit --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
> mountain bike, all-terrain bike, off-roader: 56.16%
> bicycle-built-for-two, tandem bicycle, tandem: 3.08%
> maillot : 2.23%
> alp : 0.88%
> crash helmet : 0.85%
```
![Leading group, Giro d'Italia 2021](../yolo-v8/assets/bike.jpg)

View File

@ -0,0 +1,79 @@
//! BEiT: BERT Pre-Training of Image Transformers
//! https://github.com/microsoft/unilm/tree/master/beit
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::Parser;
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Module, VarBuilder};
use candle_transformers::models::beit;
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 384, 384). Beit special normalization is applied.
pub fn load_image384_beit_norm<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
let img = image::io::Reader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(384, 384, image::imageops::FilterType::Triangle);
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (384, 384, 3), &Device::Cpu)?.permute((2, 0, 1))?;
let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = load_image384_beit_norm(args.image)?.to_device(&device)?;
println!("loaded image {image:?}");
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("vincent-espitalier/candle-beit".into());
api.get("beit_base_patch16_384.in22k_ft_in22k_in1k_adapted.safetensors")?
}
Some(model) => model.into(),
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = beit::vit_base(vb)?;
println!("model built");
let logits = model.forward(&image.unsqueeze(0)?)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
let mut prs = prs.iter().enumerate().collect::<Vec<_>>();
prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1));
for &(category_idx, pr) in prs.iter().take(5) {
println!(
"{:24}: {:.2}%",
candle_examples::imagenet::CLASSES[category_idx],
100. * pr
);
}
Ok(())
}

View File

@ -0,0 +1,367 @@
use candle::{DType, IndexOp, Result, Tensor, D};
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
const IMG_SIZE: usize = 384;
const PATCH_SIZE: usize = 16;
const NUM_CLASSES: usize = 1000;
const WINDOW_SIZE: usize = IMG_SIZE / PATCH_SIZE; // 384 / 16 = 24
const NB_TOKENS: usize = WINDOW_SIZE * WINDOW_SIZE + 1; // 24 * 24 + 1 = 577
fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
if bias {
candle_nn::linear(in_dim, out_dim, vb)
} else {
candle_nn::linear_no_bias(in_dim, out_dim, vb)
}
}
#[derive(Debug)]
struct Attention {
qkv: Linear,
proj: Linear,
relative_position_bias_table: Tensor,
relative_position_index: Tensor,
num_heads: usize,
scale: f64,
}
impl Attention {
fn new(
vb: VarBuilder,
dim: usize,
num_heads: usize,
qkv_bias: bool,
proj_bias: bool,
relative_position_index: &Tensor,
) -> Result<Self> {
let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
// num_relative_distance = token-token(47x47) + token-CLS(1) + CLS-token(1) + CLS-CLS(1) = 2212
let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3;
let relative_position_bias_table = vb.get(
(num_relative_distance, num_heads),
"relative_position_bias_table",
)?;
let relative_position_index = relative_position_index.clone();
let scale = 1. / ((dim / num_heads) as f64).sqrt();
Ok(Self {
qkv,
proj,
relative_position_bias_table,
relative_position_index,
num_heads,
scale,
})
}
}
impl Attention {
fn _get_rel_pos_bias(&self) -> Result<Tensor> {
self.relative_position_bias_table
.index_select(
&self
.relative_position_index
.flatten_all()?
.to_dtype(DType::U32)?,
0,
)?
.reshape((NB_TOKENS, NB_TOKENS, ()))?
.transpose(0, 1)? // 102
.transpose(0, 2)? // 201
.contiguous()?
.unsqueeze(0)
}
}
impl Module for Attention {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b, n, c) = xs.dims3()?;
let qkv = self
.qkv
.forward(xs)?
.reshape((b, n, 3, self.num_heads, c / self.num_heads))?
.transpose(1, 2)? // 02134
.transpose(0, 1)? // 20134
.transpose(2, 3)?; // 20314
let q = (qkv.i(0)? * self.scale)?;
let k = qkv.i(1)?.contiguous()?;
let v = qkv.i(2)?.contiguous()?;
let attn = (&q.matmul(&k.t()?)? + self._get_rel_pos_bias())?;
let attn = candle_nn::ops::softmax(&attn, D::Minus1)?;
let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
self.proj.forward(&attn)
}
}
#[derive(Debug)]
struct LayerScale {
gamma: Tensor,
}
impl LayerScale {
fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
let gamma = vb.get(dim, "gamma")?;
Ok(Self { gamma })
}
}
impl Module for LayerScale {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.broadcast_mul(&self.gamma)
}
}
#[derive(Debug)]
struct Mlp {
fc1: Linear,
fc2: Linear,
}
impl Mlp {
fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
let out_features = in_features;
let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
Ok(Self { fc1, fc2 })
}
}
impl Module for Mlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?.gelu()?;
self.fc2.forward(&xs)
}
}
#[derive(Debug)]
struct Block {
norm1: LayerNorm,
attn: Attention,
ls1: LayerScale,
norm2: LayerNorm,
mlp: Mlp,
ls2: LayerScale,
}
impl Block {
fn new(
vb: VarBuilder,
dim: usize,
num_heads: usize,
relative_position_index: &Tensor,
) -> Result<Self> {
let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
let attn = Attention::new(
vb.pp("attn"),
dim,
num_heads,
true,
true,
relative_position_index,
)?;
let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
Ok(Self {
norm1,
attn,
ls1,
norm2,
mlp,
ls2,
})
}
}
impl Module for Block {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs = self
.ls1
.forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = self
.ls2
.forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
xs + residual
}
}
#[derive(Debug)]
struct PatchEmbed {
proj: candle_nn::Conv2d,
patch_size: (usize, usize),
}
impl PatchEmbed {
fn new(vb: VarBuilder, patch_size: usize, in_chans: usize, embed_dim: usize) -> Result<Self> {
let config = candle_nn::Conv2dConfig {
stride: patch_size,
..Default::default()
};
let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
Ok(Self {
proj,
patch_size: (patch_size, patch_size),
})
}
}
impl Module for PatchEmbed {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _c, h, w) = xs.dims4()?;
let (patch_h, patch_w) = self.patch_size;
if (h % patch_h) != 0 {
candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
}
if (w % patch_w) != 0 {
candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
}
let xs = self.proj.forward(xs)?;
let (b, c, h, w) = xs.dims4()?;
// flatten embeddings.
xs.reshape((b, c, h * w))?.transpose(1, 2)
}
}
#[derive(Debug)]
pub struct BeitVisionTransformer {
patch_embed: PatchEmbed,
cls_token: Tensor,
blocks: Vec<Block>,
norm: LayerNorm,
head: Linear,
}
impl BeitVisionTransformer {
pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), PATCH_SIZE, 3, embed_dim)?;
let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?;
let relative_position_index = vb.get((NB_TOKENS, NB_TOKENS), "relative_position_index")?;
let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?;
let vb_b = vb.pp("blocks");
let blocks = (0..depth)
.map(|i| {
Block::new(
vb_b.pp(&i.to_string()),
embed_dim,
num_heads,
&relative_position_index,
)
})
.collect::<Result<Vec<_>>>()?;
Ok(Self {
patch_embed,
cls_token,
blocks,
norm,
head,
})
}
fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.patch_embed.forward(xs)?;
Tensor::cat(&[&self.cls_token, &xs], 1)
}
fn get_intermediate_layers_not_chunked(
&self,
xs: &Tensor,
blocks_to_take: &[usize],
) -> Result<Vec<Tensor>> {
let mut xs = self.prepare_tokens_with_mask(xs)?;
let mut output = Vec::new();
for (i, blk) in self.blocks.iter().enumerate() {
xs = blk.forward(&xs)?;
if blocks_to_take.contains(&i) {
output.push(xs.clone());
}
}
if output.len() != blocks_to_take.len() {
candle::bail!(
"only {} / {} blocks found",
output.len(),
blocks_to_take.len()
);
}
Ok(output)
}
pub fn get_intermediate_layers(
&self,
xs: &Tensor,
blocks_to_take: &[usize],
reshape: bool,
return_class_token: bool,
norm: bool,
) -> Result<Tensor> {
let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?;
let outputs = if norm {
outputs
.iter()
.map(|out| self.norm.forward(out))
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
let class_tokens = outputs
.iter()
.map(|out| out.i((.., 0)))
.collect::<Result<Vec<_>>>()?;
let outputs = outputs
.iter()
.map(|out| out.i((.., 1..)))
.collect::<Result<Vec<_>>>()?;
let outputs = if reshape {
let (b, _c, w, h) = xs.dims4()?;
let patch_size = self.patch_embed.patch_size.0;
let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size));
outputs
.iter()
.map(|out| {
out.reshape((b, w / patch_size, h / patch_size, num_channels))?
.transpose(2, 3)?
.transpose(1, 2)
})
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
let outputs = if return_class_token {
outputs
.iter()
.zip(class_tokens.iter())
.map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1))
.collect::<Result<Vec<_>>>()?
} else {
outputs
};
Tensor::stack(&outputs[..], 0)
}
}
impl Module for BeitVisionTransformer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = self.prepare_tokens_with_mask(xs)?;
for blk in self.blocks.iter() {
xs = blk.forward(&xs)?
}
let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?;
let xs_norm = self.norm.forward(&xs_moy_local_tokens)?;
self.head.forward(&xs_norm)
}
}
pub fn vit_base(vb: VarBuilder) -> Result<BeitVisionTransformer> {
BeitVisionTransformer::new(vb, 12, 768, 12)
}
pub fn vit_large(vb: VarBuilder) -> Result<BeitVisionTransformer> {
BeitVisionTransformer::new(vb, 24, 1024, 16)
}

View File

@ -1,3 +1,4 @@
pub mod beit;
pub mod bert; pub mod bert;
pub mod bigcode; pub mod bigcode;
pub mod blip; pub mod blip;