mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Handle arbitrary shapes in Tensor::new. (#718)
This commit is contained in:
@ -100,6 +100,29 @@ impl<S: WithDType, const N1: usize, const N2: usize, const N3: usize, const N4:
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: NdArray> NdArray for Vec<S> {
|
||||
fn shape(&self) -> Result<Shape> {
|
||||
if self.is_empty() {
|
||||
crate::bail!("empty array")
|
||||
}
|
||||
let shape0 = self[0].shape()?;
|
||||
let n = self.len();
|
||||
for v in self.iter() {
|
||||
let shape = v.shape()?;
|
||||
if shape != shape0 {
|
||||
crate::bail!("two elements have different shapes {shape:?} {shape0:?}")
|
||||
}
|
||||
}
|
||||
Ok(Shape::from([[n].as_slice(), shape0.dims()].concat()))
|
||||
}
|
||||
|
||||
fn to_cpu_storage(&self) -> CpuStorage {
|
||||
// This allocates intermediary memory and shouldn't be necessary.
|
||||
let storages = self.iter().map(|v| v.to_cpu_storage()).collect::<Vec<_>>();
|
||||
CpuStorage::concat(storages.as_slice()).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl Device {
|
||||
pub fn new_cuda(ordinal: usize) -> Result<Self> {
|
||||
Ok(Self::Cuda(crate::CudaDevice::new(ordinal)?))
|
||||
|
Reference in New Issue
Block a user