mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Add slice-scatter. (#927)
* Add slice-scatter. * Add the op. * Make transpose be a no-op when the dimensions are identical. * Add the backprop. * And add some gradient test.
This commit is contained in:
@ -1132,6 +1132,74 @@ impl Tensor {
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
}
|
||||
|
||||
/// Embeds the values of the `src` tensor into the `self` tensor on the specified dimension.
|
||||
pub fn slice_scatter<D: Dim>(&self, src: &Self, dim: usize, start: usize) -> Result<Self> {
|
||||
let dim = dim.to_index(self.shape(), "slice-scatter")?;
|
||||
if dim == 0 {
|
||||
self.slice_scatter0(src, start)
|
||||
} else {
|
||||
// TODO: Maybe we want to add a more efficient implementation at some point.
|
||||
self.transpose(0, dim)?
|
||||
.slice_scatter0(&src.transpose(0, dim)?, start)?
|
||||
.transpose(0, dim)
|
||||
}
|
||||
}
|
||||
|
||||
/// Embeds the values of the `src` tensor into the `self` tensor on the first dimension.
|
||||
pub fn slice_scatter0(&self, src: &Self, start: usize) -> Result<Self> {
|
||||
if self.dtype() != src.dtype() {
|
||||
Err(Error::DTypeMismatchBinaryOp {
|
||||
lhs: self.dtype(),
|
||||
rhs: src.dtype(),
|
||||
op: "slice-scatter",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.device().location() != src.device.location() {
|
||||
Err(Error::DeviceMismatchBinaryOp {
|
||||
lhs: self.device().location(),
|
||||
rhs: src.device().location(),
|
||||
op: "slice-scatter",
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
if self.rank() != src.rank() {
|
||||
Err(Error::UnexpectedNumberOfDims {
|
||||
expected: self.rank(),
|
||||
got: src.rank(),
|
||||
shape: src.shape().clone(),
|
||||
}
|
||||
.bt())?
|
||||
}
|
||||
let shape_ok =
|
||||
self.dims()
|
||||
.iter()
|
||||
.zip(src.dims().iter())
|
||||
.enumerate()
|
||||
.all(|(dim_idx, (&d1, &d2))| {
|
||||
if 0 == dim_idx {
|
||||
d2 + start <= d1
|
||||
} else {
|
||||
d1 == d2
|
||||
}
|
||||
});
|
||||
if !shape_ok {
|
||||
Err(Error::ShapeMismatchBinaryOp {
|
||||
op: "slice-scatter (self, src)",
|
||||
lhs: self.shape().clone(),
|
||||
rhs: src.shape().clone(),
|
||||
})?
|
||||
}
|
||||
let mut storage = self.device().zeros(self.shape(), self.dtype())?;
|
||||
self.storage()
|
||||
.copy_strided_src(&mut storage, 0, self.layout())?;
|
||||
let offset = start * src.dims()[1..].iter().product::<usize>();
|
||||
src.storage()
|
||||
.copy_strided_src(&mut storage, offset, src.layout())?;
|
||||
let op = BackpropOp::new2(self, src, |t1, t2| Op::SliceScatter0(t1, t2, start));
|
||||
Ok(from_storage(storage, self.shape(), op, false))
|
||||
}
|
||||
|
||||
/// Accumulate element from `source` at indexes `indexes` and add them to `self`.
|
||||
pub fn index_add<D: Dim>(&self, indexes: &Self, source: &Self, dim: D) -> Result<Self> {
|
||||
let dim = dim.to_index(self.shape(), "index-add")?;
|
||||
@ -1548,6 +1616,9 @@ impl Tensor {
|
||||
pub fn transpose<D1: Dim, D2: Dim>(&self, dim1: D1, dim2: D2) -> Result<Tensor> {
|
||||
let dim1 = dim1.to_index(self.shape(), "transpose")?;
|
||||
let dim2 = dim2.to_index(self.shape(), "transpose")?;
|
||||
if dim1 == dim2 {
|
||||
return Ok(self.clone());
|
||||
}
|
||||
let op = BackpropOp::new1(self, |t| Op::Transpose(t, dim1, dim2));
|
||||
let tensor_ = Tensor_ {
|
||||
id: TensorId::new(),
|
||||
|
Reference in New Issue
Block a user