mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
[WIP] Improve Yolo WASM UI example (#591)
* return detections with classes names * ignore .DS_Store * example how to load wasm module * add param to set model size * add param for model size * accept iou and confidence threshold on run * conf and iou thresholds * clamp only * remove images from branch * a couple of renamings, add readme with instructions * final design * minor font + border update
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
use crate::console_log;
|
||||
use crate::worker::{ModelData, Worker, WorkerInput, WorkerOutput};
|
||||
use crate::worker::{ModelData, RunData, Worker, WorkerInput, WorkerOutput};
|
||||
use wasm_bindgen::prelude::*;
|
||||
use wasm_bindgen_futures::JsFuture;
|
||||
use yew::{html, Component, Context, Html};
|
||||
@ -50,9 +50,13 @@ pub struct App {
|
||||
}
|
||||
|
||||
async fn model_data_load() -> Result<ModelData, JsValue> {
|
||||
let weights = fetch_url("yolo.safetensors").await?;
|
||||
let weights = fetch_url("yolov8s.safetensors").await?;
|
||||
let model_size = "s".to_string();
|
||||
console_log!("loaded weights {}", weights.len());
|
||||
Ok(ModelData { weights })
|
||||
Ok(ModelData {
|
||||
weights,
|
||||
model_size,
|
||||
})
|
||||
}
|
||||
|
||||
fn performance_now() -> Option<f64> {
|
||||
@ -162,7 +166,11 @@ impl Component for App {
|
||||
let status = format!("{err:?}");
|
||||
Msg::UpdateStatus(status)
|
||||
}
|
||||
Ok(image_data) => Msg::WorkerInMsg(WorkerInput::Run(image_data)),
|
||||
Ok(image_data) => Msg::WorkerInMsg(WorkerInput::RunData(RunData {
|
||||
image_data,
|
||||
conf_threshold: 0.5,
|
||||
iou_threshold: 0.5,
|
||||
})),
|
||||
}
|
||||
});
|
||||
}
|
||||
|
@ -1,3 +1,5 @@
|
||||
use candle_wasm_example_yolo::coco_classes;
|
||||
use candle_wasm_example_yolo::model::Bbox;
|
||||
use candle_wasm_example_yolo::worker::Model as M;
|
||||
use wasm_bindgen::prelude::*;
|
||||
|
||||
@ -9,15 +11,36 @@ pub struct Model {
|
||||
#[wasm_bindgen]
|
||||
impl Model {
|
||||
#[wasm_bindgen(constructor)]
|
||||
pub fn new(data: Vec<u8>) -> Result<Model, JsError> {
|
||||
let inner = M::load_(&data)?;
|
||||
pub fn new(data: Vec<u8>, model_size: &str) -> Result<Model, JsError> {
|
||||
let inner = M::load_(&data, model_size)?;
|
||||
Ok(Self { inner })
|
||||
}
|
||||
|
||||
#[wasm_bindgen]
|
||||
pub fn run(&self, image: Vec<u8>) -> Result<String, JsError> {
|
||||
let boxes = self.inner.run(image)?;
|
||||
let json = serde_json::to_string(&boxes)?;
|
||||
pub fn run(
|
||||
&self,
|
||||
image: Vec<u8>,
|
||||
conf_threshold: f32,
|
||||
iou_threshold: f32,
|
||||
) -> Result<String, JsError> {
|
||||
let bboxes = self.inner.run(image, conf_threshold, iou_threshold)?;
|
||||
let mut detections: Vec<(String, Bbox)> = vec![];
|
||||
|
||||
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
|
||||
for b in bboxes_for_class.iter() {
|
||||
detections.push((
|
||||
coco_classes::NAMES[class_index].to_string(),
|
||||
Bbox {
|
||||
xmin: b.xmin,
|
||||
ymin: b.ymin,
|
||||
xmax: b.xmax,
|
||||
ymax: b.ymax,
|
||||
confidence: b.confidence,
|
||||
},
|
||||
));
|
||||
}
|
||||
}
|
||||
let json = serde_json::to_string(&detections)?;
|
||||
Ok(json)
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
mod app;
|
||||
mod coco_classes;
|
||||
mod model;
|
||||
pub mod coco_classes;
|
||||
pub mod model;
|
||||
pub mod worker;
|
||||
pub use app::App;
|
||||
pub use worker::Worker;
|
||||
|
@ -623,16 +623,25 @@ fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
|
||||
i_area / (b1_area + b2_area - i_area)
|
||||
}
|
||||
|
||||
pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<Vec<Vec<Bbox>>> {
|
||||
pub fn report(
|
||||
pred: &Tensor,
|
||||
img: DynamicImage,
|
||||
w: usize,
|
||||
h: usize,
|
||||
conf_threshold: f32,
|
||||
iou_threshold: f32,
|
||||
) -> Result<Vec<Vec<Bbox>>> {
|
||||
let (pred_size, npreds) = pred.dims2()?;
|
||||
let nclasses = pred_size - 4;
|
||||
let conf_threshold = conf_threshold.clamp(0.0, 1.0);
|
||||
let iou_threshold = iou_threshold.clamp(0.0, 1.0);
|
||||
// The bounding boxes grouped by (maximum) class index.
|
||||
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
|
||||
// Extract the bounding boxes for which confidence is above the threshold.
|
||||
for index in 0..npreds {
|
||||
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
|
||||
let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap();
|
||||
if confidence > CONFIDENCE_THRESHOLD {
|
||||
if confidence > conf_threshold {
|
||||
let mut class_index = 0;
|
||||
for i in 0..nclasses {
|
||||
if pred[4 + i] > pred[4 + class_index] {
|
||||
@ -659,7 +668,7 @@ pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<Ve
|
||||
let mut drop = false;
|
||||
for prev_index in 0..current_index {
|
||||
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
|
||||
if iou > NMS_THRESHOLD {
|
||||
if iou > iou_threshold {
|
||||
drop = true;
|
||||
break;
|
||||
}
|
||||
|
@ -25,6 +25,14 @@ macro_rules! console_log {
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct ModelData {
|
||||
pub weights: Vec<u8>,
|
||||
pub model_size: String,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct RunData {
|
||||
pub image_data: Vec<u8>,
|
||||
pub conf_threshold: f32,
|
||||
pub iou_threshold: f32,
|
||||
}
|
||||
|
||||
pub struct Model {
|
||||
@ -32,7 +40,12 @@ pub struct Model {
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn run(&self, image_data: Vec<u8>) -> Result<Vec<Vec<Bbox>>> {
|
||||
pub fn run(
|
||||
&self,
|
||||
image_data: Vec<u8>,
|
||||
conf_threshold: f32,
|
||||
iou_threshold: f32,
|
||||
) -> Result<Vec<Vec<Bbox>>> {
|
||||
console_log!("image data: {}", image_data.len());
|
||||
let image_data = std::io::Cursor::new(image_data);
|
||||
let original_image = image::io::Reader::new(image_data)
|
||||
@ -68,20 +81,37 @@ impl Model {
|
||||
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report(&predictions, original_image, width, height)?;
|
||||
let bboxes = report(
|
||||
&predictions,
|
||||
original_image,
|
||||
width,
|
||||
height,
|
||||
conf_threshold,
|
||||
iou_threshold,
|
||||
)?;
|
||||
Ok(bboxes)
|
||||
}
|
||||
|
||||
pub fn load_(weights: &[u8]) -> Result<Self> {
|
||||
pub fn load_(weights: &[u8], model_size: &str) -> Result<Self> {
|
||||
let multiples = match model_size {
|
||||
"n" => Multiples::n(),
|
||||
"s" => Multiples::s(),
|
||||
"m" => Multiples::m(),
|
||||
"l" => Multiples::l(),
|
||||
"x" => Multiples::x(),
|
||||
_ => Err(candle::Error::Msg(
|
||||
"invalid model size: must be n, s, m, l or x".to_string(),
|
||||
))?,
|
||||
};
|
||||
let dev = &Device::Cpu;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
||||
let model = YoloV8::load(vb, multiples, 80)?;
|
||||
Ok(Self { model })
|
||||
}
|
||||
|
||||
pub fn load(md: ModelData) -> Result<Self> {
|
||||
Self::load_(&md.weights)
|
||||
Self::load_(&md.weights, &md.model_size.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
@ -93,7 +123,7 @@ pub struct Worker {
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerInput {
|
||||
ModelData(ModelData),
|
||||
Run(Vec<u8>),
|
||||
RunData(RunData),
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
@ -125,10 +155,12 @@ impl yew_agent::Worker for Worker {
|
||||
}
|
||||
Err(err) => Err(format!("model creation error {err:?}")),
|
||||
},
|
||||
WorkerInput::Run(image_data) => match &mut self.model {
|
||||
WorkerInput::RunData(rd) => match &mut self.model {
|
||||
None => Err("model has not been set yet".to_string()),
|
||||
Some(model) => {
|
||||
let result = model.run(image_data).map_err(|e| e.to_string());
|
||||
let result = model
|
||||
.run(rd.image_data, rd.conf_threshold, rd.iou_threshold)
|
||||
.map_err(|e| e.to_string());
|
||||
Ok(WorkerOutput::ProcessingDone(result))
|
||||
}
|
||||
},
|
||||
|
Reference in New Issue
Block a user