mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
[WIP] Improve Yolo WASM UI example (#591)
* return detections with classes names * ignore .DS_Store * example how to load wasm module * add param to set model size * add param for model size * accept iou and confidence threshold on run * conf and iou thresholds * clamp only * remove images from branch * a couple of renamings, add readme with instructions * final design * minor font + border update
This commit is contained in:
@ -25,6 +25,14 @@ macro_rules! console_log {
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct ModelData {
|
||||
pub weights: Vec<u8>,
|
||||
pub model_size: String,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct RunData {
|
||||
pub image_data: Vec<u8>,
|
||||
pub conf_threshold: f32,
|
||||
pub iou_threshold: f32,
|
||||
}
|
||||
|
||||
pub struct Model {
|
||||
@ -32,7 +40,12 @@ pub struct Model {
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn run(&self, image_data: Vec<u8>) -> Result<Vec<Vec<Bbox>>> {
|
||||
pub fn run(
|
||||
&self,
|
||||
image_data: Vec<u8>,
|
||||
conf_threshold: f32,
|
||||
iou_threshold: f32,
|
||||
) -> Result<Vec<Vec<Bbox>>> {
|
||||
console_log!("image data: {}", image_data.len());
|
||||
let image_data = std::io::Cursor::new(image_data);
|
||||
let original_image = image::io::Reader::new(image_data)
|
||||
@ -68,20 +81,37 @@ impl Model {
|
||||
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report(&predictions, original_image, width, height)?;
|
||||
let bboxes = report(
|
||||
&predictions,
|
||||
original_image,
|
||||
width,
|
||||
height,
|
||||
conf_threshold,
|
||||
iou_threshold,
|
||||
)?;
|
||||
Ok(bboxes)
|
||||
}
|
||||
|
||||
pub fn load_(weights: &[u8]) -> Result<Self> {
|
||||
pub fn load_(weights: &[u8], model_size: &str) -> Result<Self> {
|
||||
let multiples = match model_size {
|
||||
"n" => Multiples::n(),
|
||||
"s" => Multiples::s(),
|
||||
"m" => Multiples::m(),
|
||||
"l" => Multiples::l(),
|
||||
"x" => Multiples::x(),
|
||||
_ => Err(candle::Error::Msg(
|
||||
"invalid model size: must be n, s, m, l or x".to_string(),
|
||||
))?,
|
||||
};
|
||||
let dev = &Device::Cpu;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
||||
let model = YoloV8::load(vb, multiples, 80)?;
|
||||
Ok(Self { model })
|
||||
}
|
||||
|
||||
pub fn load(md: ModelData) -> Result<Self> {
|
||||
Self::load_(&md.weights)
|
||||
Self::load_(&md.weights, &md.model_size.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
@ -93,7 +123,7 @@ pub struct Worker {
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerInput {
|
||||
ModelData(ModelData),
|
||||
Run(Vec<u8>),
|
||||
RunData(RunData),
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
@ -125,10 +155,12 @@ impl yew_agent::Worker for Worker {
|
||||
}
|
||||
Err(err) => Err(format!("model creation error {err:?}")),
|
||||
},
|
||||
WorkerInput::Run(image_data) => match &mut self.model {
|
||||
WorkerInput::RunData(rd) => match &mut self.model {
|
||||
None => Err("model has not been set yet".to_string()),
|
||||
Some(model) => {
|
||||
let result = model.run(image_data).map_err(|e| e.to_string());
|
||||
let result = model
|
||||
.run(rd.image_data, rd.conf_threshold, rd.iou_threshold)
|
||||
.map_err(|e| e.to_string());
|
||||
Ok(WorkerOutput::ProcessingDone(result))
|
||||
}
|
||||
},
|
||||
|
Reference in New Issue
Block a user