Wasm proof of concept. (#167)

* Wasm proof of concept.

* Run whisper inference in the browser.

* Some fixes.

* Move the wasm example.

* Change the tokenizer config.
This commit is contained in:
Laurent Mazare
2023-07-14 14:51:46 +01:00
committed by GitHub
parent d88b6cdca9
commit 88f666781f
9 changed files with 986 additions and 1 deletions

5
.gitignore vendored
View File

@ -13,10 +13,13 @@ Cargo.lock
# MSVC Windows builds of rustc generate these, which store debugging information
*.pdb
*tokenizer.json
*tokenizer*.json
*.npz
perf.data
flamegraph.svg
*.so
*.swp
candle-wasm-example/*.wav
candle-wasm-example/*.safetensors

View File

@ -7,6 +7,7 @@ members = [
"candle-nn",
"candle-pyo3",
"candle-transformers",
"candle-wasm-example",
]
[profile.release-with-debug]

View File

@ -155,6 +155,11 @@ impl MmapedFile {
}
impl<'a> SafeTensors<'a> {
pub fn from_buffer(buffer: &'a [u8]) -> Result<Self> {
let st = safetensors::SafeTensors::deserialize(buffer)?;
Ok(SafeTensors(st))
}
pub fn tensor(&self, name: &str, device: &Device) -> Result<Tensor> {
convert(self.0.tensor(name)?, device)
}

View File

@ -0,0 +1,45 @@
[package]
name = "candle-wasm-example"
version = "0.1.0"
edition = "2021"
description = "Wasm example for the candle ML framework."
repository = "https://github.com/LaurentMazare/candle"
keywords = ["blas", "tensor", "machine-learning"]
categories = ["science"]
license = "MIT/Apache-2.0"
readme = "README.md"
[lib]
crate-type = ["cdylib"]
[dependencies]
candle = { path = "../candle-core", default-features=false }
candle-nn = { path = "../candle-nn", default-features=false }
wasm-bindgen = "0.2.87"
getrandom = { version = "0.2", features = ["js"] }
tokenizers = { version = "0.13.3", default-features=false, features=["unstable_wasm"] }
serde = { version = "1.0.166", features = ["derive"] }
serde_json = "1.0.99"
wav = "1.0.0"
rand = "0.8.5"
num-traits = "0.2.15"
anyhow = "1.0.71"
js-sys = "0.3.64"
wasm-bindgen-futures = "0.4.37"
[dependencies.web-sys]
version = "0.3.64"
features = [
'Blob',
'Document',
'Element',
'HtmlElement',
'Node',
'Window',
'Request',
'RequestCache',
'RequestInit',
'RequestMode',
'Response',
]

View File

@ -0,0 +1,9 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>Hello Candle - Rust</title>
<script type="module" src="./index.js"></script>
</head>
<body style="white-space: pre-line"></body>
</html>

View File

@ -0,0 +1,8 @@
import init from "./pkg/candle_wasm.js";
const runWasm = async () => {
const candleWasm = await init("./pkg/candle_wasm_bg.wasm");
candleWasm.test_fn();
await candleWasm.run_fn();
};
runWasm();

View File

@ -0,0 +1,216 @@
// Audio processing code, adapted from whisper.cpp
// https://github.com/ggerganov/whisper.cpp
pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
impl Float for f32 {}
impl Float for f64 {}
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
fn fft<T: Float>(inp: &[T]) -> Vec<T> {
let n = inp.len();
let zero = T::zero();
if n == 1 {
return vec![inp[0], zero];
}
if n % 2 == 1 {
return dft(inp);
}
let mut out = vec![zero; n * 2];
let mut even = vec![];
even.reserve(n / 2);
let mut odd = vec![];
odd.reserve(n / 2);
for (i, &inp) in inp.iter().enumerate() {
if i % 2 == 0 {
even.push(inp)
} else {
odd.push(inp);
}
}
let even_fft = fft(&even);
let odd_fft = fft(&odd);
let two_pi = T::PI() + T::PI();
let n_t = T::from(n).unwrap();
for k in 0..n / 2 {
let k_t = T::from(k).unwrap();
let theta = two_pi * k_t / n_t;
let re = theta.cos();
let im = -theta.sin();
let re_odd = odd_fft[2 * k];
let im_odd = odd_fft[2 * k + 1];
out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
}
out
}
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
fn dft<T: Float>(inp: &[T]) -> Vec<T> {
let zero = T::zero();
let n = inp.len();
let two_pi = T::PI() + T::PI();
let mut out = Vec::new();
out.reserve(2 * n);
let n_t = T::from(n).unwrap();
for k in 0..n {
let k_t = T::from(k).unwrap();
let mut re = zero;
let mut im = zero;
for (j, &inp) in inp.iter().enumerate() {
let j_t = T::from(j).unwrap();
let angle = two_pi * k_t * j_t / n_t;
re += inp * angle.cos();
im -= inp * angle.sin();
}
out.push(re);
out.push(im);
}
out
}
#[allow(clippy::too_many_arguments)]
// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
fn log_mel_spectrogram_w<T: Float>(
ith: usize,
hann: &[T],
samples: &[T],
filters: &[T],
fft_size: usize,
fft_step: usize,
speed_up: bool,
n_len: usize,
n_mel: usize,
n_threads: usize,
) -> Vec<T> {
let n_fft = if speed_up {
1 + fft_size / 4
} else {
1 + fft_size / 2
};
let zero = T::zero();
let half = T::from(0.5).unwrap();
let mut fft_in = vec![zero; fft_size];
let mut mel = vec![zero; n_len * n_mel];
for i in (ith..n_len).step_by(n_threads) {
let offset = i * fft_step;
// apply Hanning window
for j in 0..fft_size {
fft_in[j] = if offset + j < samples.len() {
hann[j] * samples[offset + j]
} else {
zero
}
}
// FFT -> mag^2
let mut fft_out: Vec<T> = fft(&fft_in);
for j in 0..fft_size {
fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
}
for j in 1..fft_size / 2 {
let v = fft_out[fft_size - j];
fft_out[j] += v;
}
if speed_up {
// scale down in the frequency domain results in a speed up in the time domain
for j in 0..n_fft {
fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
}
}
// mel spectrogram
for j in 0..n_mel {
let mut sum = zero;
for k in 0..n_fft {
sum += fft_out[k] * filters[j * n_fft + k];
}
mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
}
}
mel
}
fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
samples: &[T],
filters: &[T],
fft_size: usize,
fft_step: usize,
n_mel: usize,
speed_up: bool,
) -> Vec<T> {
let zero = T::zero();
let two_pi = T::PI() + T::PI();
let half = T::from(0.5).unwrap();
let one = T::from(1.0).unwrap();
let four = T::from(4.0).unwrap();
let fft_size_t = T::from(fft_size).unwrap();
let hann: Vec<T> = (0..fft_size)
.map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
.collect();
let n_len = samples.len() / fft_step;
// pad audio with at least one extra chunk of zeros
let pad = 100 * super::CHUNK_LENGTH / 2;
let n_len = if n_len % pad != 0 {
(n_len / pad + 1) * pad
} else {
n_len
};
let n_len = n_len + pad;
let samples = {
let mut samples_padded = samples.to_vec();
let to_add = n_len * fft_step - samples.len();
samples_padded.extend(std::iter::repeat(zero).take(to_add));
samples_padded
};
// Use a single thread for now.
let mut mel = log_mel_spectrogram_w(
0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
);
let mmax = mel
.iter()
.max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
.copied()
.unwrap_or(zero)
- T::from(8).unwrap();
for m in mel.iter_mut() {
let v = T::max(*m, mmax);
*m = v / four + one
}
mel
}
pub fn pcm_to_mel<T: Float + std::fmt::Display>(
samples: &[T],
filters: &[T],
) -> anyhow::Result<Vec<T>> {
let mel = log_mel_spectrogram_(
samples,
filters,
super::N_FFT,
super::HOP_LENGTH,
super::N_MELS,
false,
);
Ok(mel)
}

View File

@ -0,0 +1,335 @@
#![allow(dead_code)]
use anyhow::Error as E;
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use rand::{distributions::Distribution, SeedableRng};
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;
use wasm_bindgen_futures::JsFuture;
mod audio;
mod model;
use model::{Config, Whisper};
const DTYPE: DType = DType::F32;
// Audio parameters.
const SAMPLE_RATE: usize = 16000;
const N_FFT: usize = 400;
const N_MELS: usize = 80;
const HOP_LENGTH: usize = 160;
const CHUNK_LENGTH: usize = 30;
const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
const N_SAMPLES_PER_TOKEN: usize = HOP_LENGTH * 2; // the initial convolutions has stride 2
const FRAMES_PER_SECOND: usize = SAMPLE_RATE / HOP_LENGTH; // 10ms per audio frame
const TOKENS_PER_SECOND: usize = SAMPLE_RATE / N_SAMPLES_PER_TOKEN; // 20ms per audio token
const NO_SPEECH_THRESHOLD: f64 = 0.6;
const LOGPROB_THRESHOLD: f64 = -1.0;
const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
// Tokenizer dependent bits.
const SOT_TOKEN: u32 = 50257;
const EOT_TOKEN: u32 = 50256;
const NO_SPEECH_TOKEN: u32 = 50361;
const NO_TIMESTAMP_TOKEN: u32 = 50362;
// From the _get_suppress_tokens function + 50362 (no timestamp)
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/decoding.py#L605
const SUPPRESS_TOKENS: [u32; 91] = [
1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357,
366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782,
1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959,
10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992,
19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549,
47282, 49146, 50257, 50357, 50358, 50359, 50360, 50361, 50362,
];
#[wasm_bindgen]
extern "C" {
// Use `js_namespace` here to bind `console.log(..)` instead of just
// `log(..)`
#[wasm_bindgen(js_namespace = console)]
fn log(s: &str);
}
macro_rules! console_log {
// Note that this is using the `log` function imported above during
// `bare_bones`
($($t:tt)*) => (log(&format_args!($($t)*).to_string()))
}
#[derive(Debug, Clone)]
struct DecodingResult {
tokens: Vec<u32>,
text: String,
avg_logprob: f64,
no_speech_prob: f64,
temperature: f64,
compression_ratio: f64,
}
#[derive(Debug, Clone)]
struct Segment {
start: f64,
duration: f64,
dr: DecodingResult,
}
struct Decoder {
model: Whisper,
rng: rand::rngs::StdRng,
tokenizer: Tokenizer,
suppress_tokens: Tensor,
}
impl Decoder {
fn new(
model: Whisper,
tokenizer: Tokenizer,
seed: u64,
device: &Device,
) -> anyhow::Result<Self> {
let suppress_tokens: Vec<f32> = (0..model.config.vocab_size as u32)
.map(|i| {
if SUPPRESS_TOKENS.contains(&i) {
f32::NEG_INFINITY
} else {
0f32
}
})
.collect();
let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
Ok(Self {
model,
rng: rand::rngs::StdRng::seed_from_u64(seed),
tokenizer,
suppress_tokens,
})
}
fn decode(&mut self, mel: &Tensor, t: f64) -> anyhow::Result<DecodingResult> {
let model = &self.model;
let audio_features = model.encoder.forward(mel)?;
console_log!("audio features: {:?}", audio_features.dims());
let sample_len = model.config.max_target_positions / 2;
let mut sum_logprob = 0f64;
let mut no_speech_prob = f64::NAN;
let mut tokens = vec![SOT_TOKEN];
for i in 0..sample_len {
let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?;
// The model expects a batch dim but this inference loop does not handle
// it so we add it at this point.
let tokens_t = tokens_t.unsqueeze(0)?;
let logits = model.decoder.forward(&tokens_t, &audio_features)?;
let logits = logits.squeeze(0)?;
// Extract the no speech probability on the first iteration by looking at the first
// token logits and the probability for the according token.
if i == 0 {
no_speech_prob = logits
.get(0)?
.softmax(0)?
.get(NO_SPEECH_TOKEN as usize)?
.to_scalar::<f32>()? as f64;
}
let (seq_len, _) = logits.shape().r2()?;
let logits = logits
.get(seq_len - 1)?
.broadcast_add(&self.suppress_tokens)?;
let next_token = if t > 0f64 {
let prs = (&logits / t)?.softmax(0)?;
let logits_v: Vec<f32> = prs.to_vec1()?;
let distr = rand::distributions::WeightedIndex::new(&logits_v)?;
distr.sample(&mut self.rng) as u32
} else {
let logits_v: Vec<f32> = logits.to_vec1()?;
logits_v
.iter()
.enumerate()
.max_by(|(_, u), (_, v)| u.total_cmp(v))
.map(|(i, _)| i as u32)
.unwrap()
};
tokens.push(next_token);
let prob = logits
.softmax(candle::D::Minus1)?
.get(next_token as usize)?
.to_scalar::<f32>()? as f64;
if next_token == EOT_TOKEN || tokens.len() > model.config.max_target_positions {
break;
}
sum_logprob += prob.ln();
}
let text = self
.tokenizer
.decode(tokens.clone(), true)
.map_err(E::msg)?;
let avg_logprob = sum_logprob / tokens.len() as f64;
Ok(DecodingResult {
tokens,
text,
avg_logprob,
no_speech_prob,
temperature: t,
compression_ratio: f64::NAN,
})
}
fn decode_with_fallback(&mut self, segment: &Tensor) -> anyhow::Result<DecodingResult> {
for (i, &t) in TEMPERATURES.iter().enumerate() {
let dr: Result<DecodingResult, _> = self.decode(segment, t);
if i == TEMPERATURES.len() - 1 {
return dr;
}
// On errors, we try again with a different temperature.
match dr {
Ok(dr) => {
let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
|| dr.avg_logprob < LOGPROB_THRESHOLD;
if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
return Ok(dr);
}
}
Err(err) => {
console_log!("Error running at {t}: {err}")
}
}
}
unreachable!()
}
fn run(&mut self, mel: &Tensor) -> anyhow::Result<Vec<Segment>> {
let (_, _, content_frames) = mel.shape().r3()?;
let mut seek = 0;
let mut segments = vec![];
while seek < content_frames {
let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let segment_size = usize::min(content_frames - seek, N_FRAMES);
let mel_segment = mel.narrow(2, seek, segment_size)?;
let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
let dr = self.decode_with_fallback(&mel_segment)?;
seek += segment_size;
if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
console_log!("no speech detected, skipping {seek} {dr:?}");
continue;
}
let segment = Segment {
start: time_offset,
duration: segment_duration,
dr,
};
console_log!("{seek}: {segment:?}");
segments.push(segment)
}
Ok(segments)
}
}
async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> {
use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response};
let window = web_sys::window().ok_or("window")?;
let mut opts = RequestInit::new();
let opts = opts
.method("GET")
.mode(RequestMode::Cors)
.cache(RequestCache::NoCache);
let request = Request::new_with_str_and_init(url, opts)?;
let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?;
// `resp_value` is a `Response` object.
assert!(resp_value.is_instance_of::<Response>());
let resp: Response = resp_value.dyn_into()?;
let data = JsFuture::from(resp.blob()?).await?;
let blob = web_sys::Blob::from(data);
let array_buffer = JsFuture::from(blob.array_buffer()).await?;
let data = js_sys::Uint8Array::new(&array_buffer).to_vec();
Ok(data)
}
fn w<T: ToString>(x: T) -> String {
x.to_string()
}
async fn run_impl() -> Result<(), JsValue> {
let device = Device::Cpu;
let tokenizer_config = fetch_url("tokenizer.en.json").await?;
let tokenizer = Tokenizer::from_bytes(tokenizer_config).map_err(w)?;
let mel_filters = fetch_url("mel_filters.safetensors").await?;
let mel_filters = candle::safetensors::SafeTensors::from_buffer(&mel_filters).map_err(w)?;
let mel_filters = mel_filters.tensor("mel_80", &device).map_err(w)?;
console_log!("loaded mel filters {:?}", mel_filters.shape());
let mel_filters = mel_filters
.flatten_all()
.map_err(w)?
.to_vec1::<f32>()
.map_err(w)?;
let wav_input = fetch_url("jfk.wav").await?;
let mut wav_input = std::io::Cursor::new(wav_input);
let (header, data) = wav::read(&mut wav_input).map_err(w)?;
console_log!("loaded wav data: {header:?}");
if header.sampling_rate != SAMPLE_RATE as u32 {
Err(format!(
"wav file must have a {} sampling rate",
SAMPLE_RATE
))?
}
let data = data.as_sixteen().expect("expected 16 bit wav file");
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
.iter()
.map(|v| *v as f32 / 32768.)
.collect();
console_log!("pcm data loaded {}", pcm_data.len());
let mel = audio::pcm_to_mel(&pcm_data, &mel_filters).map_err(w)?;
let mel_len = mel.len();
let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device).map_err(w)?;
console_log!("loaded mel: {:?}", mel.dims());
let weights = fetch_url("tiny.en.safetensors").await?;
let weights = candle::safetensors::SafeTensors::from_buffer(&weights).map_err(w)?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
let config = Config::tiny_en();
let model = Whisper::load(&vb, config).map_err(w)?;
let mut dc = Decoder::new(model, tokenizer, 299792458, &device).map_err(w)?;
dc.run(&mel).map_err(w)?;
Ok(())
}
fn test_fn_impl() -> anyhow::Result<String> {
let t1 = Tensor::randn((3, 4), DType::F32, &Device::Cpu, 0., 1.)?;
let t2 = Tensor::randn((4, 2), DType::F32, &Device::Cpu, 0., 1.)?;
let t = t1.matmul(&t2)?;
console_log!("matmul result: {t}");
let res = format!("Hello Candle!\n\nt1:\n{t1}\n\nt2:\n{t2}\n\nt1@t2:\n{t}\n");
Ok(res)
}
#[wasm_bindgen]
pub fn test_fn() -> std::result::Result<(), JsValue> {
let result = match test_fn_impl() {
Ok(v) => v,
Err(err) => format!("error: {err:?}"),
};
let window = web_sys::window().expect("no global `window` exists");
let document = window.document().expect("should have a document on window");
let p_element = document.create_element("p")?;
p_element.set_text_content(Some(&result));
let body = document.body().expect("document should have a body");
body.append_child(&p_element)?;
Ok(())
}
#[wasm_bindgen]
pub async fn run_fn() -> std::result::Result<(), JsValue> {
console_log!("run_fn starting...");
run_impl().await?;
Ok(())
}

View File

@ -0,0 +1,363 @@
#![allow(dead_code)]
// We use anyhow rather than candle errors as it provides better support for getting the backtrace
// back when using RUST_LIB_BACKTRACE=1.
use anyhow::Result;
use candle::{Device, Tensor};
use candle_nn::{Conv1d, Conv1dConfig, Embedding, LayerNorm, Linear, VarBuilder};
use serde::Deserialize;
// The names in comments correspond to the original implementation:
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
pub num_mel_bins: usize, // n_mels
pub max_source_positions: usize, // n_audio_ctx
pub d_model: usize, // n_audio_state
pub encoder_attention_heads: usize, // n_audio_head
pub encoder_layers: usize, // n_audio_layer
pub vocab_size: usize, // n_vocab
pub max_target_positions: usize, // n_text_ctx
// pub n_text_state: usize,
pub decoder_attention_heads: usize, // n_text_head
pub decoder_layers: usize, // n_text_layer
}
impl Config {
pub fn tiny_en() -> Self {
Self {
num_mel_bins: 80,
vocab_size: 51864,
max_source_positions: 1500,
d_model: 384,
encoder_attention_heads: 6,
encoder_layers: 4,
max_target_positions: 448,
// n_text_state: 384,
decoder_attention_heads: 6,
decoder_layers: 4,
}
}
}
fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
Ok(Embedding::new(embeddings, hidden_size))
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
let bias = vb.get(size2, "bias")?;
Ok(Linear::new(weight, Some(bias)))
}
fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn conv1d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
let bias = vb.get(out_channels, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}
fn conv1d_no_bias(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
Ok(Conv1d::new(weight, None, config))
}
struct Dropout {
pr: f64,
}
impl Dropout {
fn new(pr: f64) -> Self {
Self { pr }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
// TODO
Ok(x.clone())
}
}
fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
let weight = vb.get(size, "weight")?;
let bias = vb.get(size, "bias")?;
Ok(LayerNorm::new(weight, bias, 1e-5))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
struct MultiHeadAttention {
query: Linear,
key: Linear,
value: Linear,
out: Linear,
n_head: usize,
}
impl MultiHeadAttention {
fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
let query = linear(n_state, n_state, vb.pp("q_proj"))?;
let value = linear(n_state, n_state, vb.pp("v_proj"))?;
let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
let out = linear(n_state, n_state, vb.pp("out_proj"))?;
Ok(Self {
query,
key,
value,
out,
n_head,
})
}
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
let q = self.query.forward(x)?;
let k = self.key.forward(xa.unwrap_or(x))?;
let v = self.value.forward(xa.unwrap_or(x))?;
let wv = self.qkv_attention(&q, &k, &v, mask)?;
let out = self.out.forward(&wv)?;
Ok(out)
}
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
let (n_batch, n_ctx, n_state) = x.shape().r3()?;
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
Ok(x.reshape(target_dims)?.transpose(1, 2)?)
}
fn qkv_attention(
&self,
q: &Tensor,
k: &Tensor,
v: &Tensor,
mask: Option<&Tensor>,
) -> Result<Tensor> {
let (_, n_ctx, n_state) = q.shape().r3()?;
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
let q = (self.reshape_head(q)? * scale)?;
let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
let v = self.reshape_head(v)?.contiguous()?;
let mut qk = q.matmul(&k)?;
if let Some(mask) = mask {
let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
qk = qk.broadcast_add(&mask)?
}
let w = qk.softmax(candle::D::Minus1)?;
let wv = w.matmul(&v)?.transpose(1, 2)?.flatten_from(2)?;
Ok(wv)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
struct ResidualAttentionBlock {
attn: MultiHeadAttention,
attn_ln: LayerNorm,
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
mlp_linear1: Linear,
mlp_linear2: Linear,
mlp_ln: LayerNorm,
}
impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
let cross_attn = if ca {
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
Some((cross_attn, cross_attn_ln))
} else {
None
};
let n_mlp = n_state * 4;
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
Ok(Self {
attn,
attn_ln,
cross_attn,
mlp_linear1,
mlp_linear2,
mlp_ln,
})
}
fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?;
let mut x = (x + attn)?;
if let Some((attn, ln)) = &self.cross_attn {
x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?;
}
let mlp = self.mlp_linear2.forward(
&self
.mlp_linear1
.forward(&self.mlp_ln.forward(&x)?)?
.gelu()?,
)?;
Ok((x + mlp)?)
}
}
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
let max_timescale = 10000f32;
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
let inv_timescales: Vec<_> = (0..channels / 2)
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
.collect();
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
.to_dtype(candle::DType::F32)?
.unsqueeze(1)?;
let sh = (length, channels / 2);
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
Ok(sincos)
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
pub struct AudioEncoder {
conv1: Conv1d,
conv2: Conv1d,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln_post: LayerNorm,
}
impl AudioEncoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let n_state = cfg.d_model;
let n_head = cfg.encoder_attention_heads;
let n_ctx = cfg.max_source_positions;
let cfg1 = Conv1dConfig {
padding: 1,
stride: 1,
};
let cfg2 = Conv1dConfig {
padding: 1,
stride: 2,
};
let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
let blocks = (0..cfg.encoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
Ok(Self {
conv1,
conv2,
positional_embedding,
blocks,
ln_post,
})
}
pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = self.conv1.forward(x)?.gelu()?;
let x = self.conv2.forward(&x)?.gelu()?;
let x = x.transpose(1, 2)?;
let (_bsize, seq_len, _hidden) = x.shape().r3()?;
let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
let mut x = x.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter() {
x = block.forward(&x, None, None)?
}
let x = self.ln_post.forward(&x)?;
Ok(x)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
pub struct TextDecoder {
token_embedding: Embedding,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln: LayerNorm,
mask: Tensor,
}
impl TextDecoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let n_state = cfg.d_model;
let n_head = cfg.decoder_attention_heads;
let n_ctx = cfg.max_target_positions;
let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
let blocks = (0..cfg.decoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
Ok(Self {
token_embedding,
positional_embedding,
blocks,
ln,
mask,
})
}
pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
let x_dims = x.dims();
let last = x_dims[x_dims.len() - 1];
let token_embedding = self.token_embedding.forward(x)?;
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter() {
x = block.forward(&x, Some(xa), Some(&self.mask))?;
}
let x = self.ln.forward(&x)?;
let w = self
.token_embedding
.embeddings()
.broadcast_left(x_dims[0])?;
let logits = x.matmul(&w.t()?)?;
Ok(logits)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
pub struct Whisper {
pub encoder: AudioEncoder,
pub decoder: TextDecoder,
pub config: Config,
}
impl Whisper {
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
Ok(Self {
encoder,
decoder,
config,
})
}
pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
let enc = self.encoder.forward(mel)?;
let dec = self.decoder.forward(tokens, &enc)?;
Ok(dec)
}
}