mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Move the conv1d layer to candle_nn. (#117)
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
use crate::nn::{Conv1D, ConvConfig, VarBuilder};
|
||||
use crate::nn::{conv1d, conv1d_weight_norm, Conv1d, Conv1dConfig, VarBuilder};
|
||||
use anyhow::Result;
|
||||
use candle::Tensor;
|
||||
|
||||
@ -221,7 +221,7 @@ impl EncodecConvTranspose1d {
|
||||
|
||||
#[derive(Debug)]
|
||||
struct EncodecConv1d {
|
||||
conv: Conv1D,
|
||||
conv: Conv1d,
|
||||
}
|
||||
|
||||
impl EncodecConv1d {
|
||||
@ -235,19 +235,19 @@ impl EncodecConv1d {
|
||||
cfg: &Config,
|
||||
) -> Result<Self> {
|
||||
let conv = match cfg.norm_type {
|
||||
NormType::WeightNorm => Conv1D::load_weight_norm(
|
||||
NormType::WeightNorm => conv1d_weight_norm(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
ConvConfig { padding: 0, stride },
|
||||
Conv1dConfig { padding: 0, stride },
|
||||
&format!("{p}.conv"),
|
||||
vb,
|
||||
)?,
|
||||
NormType::None => Conv1D::load(
|
||||
NormType::None => conv1d(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
ConvConfig { padding: 0, stride },
|
||||
Conv1dConfig { padding: 0, stride },
|
||||
&format!("{p}.conv"),
|
||||
vb,
|
||||
)?,
|
||||
|
@ -125,59 +125,39 @@ pub fn embedding(
|
||||
Ok(Embedding::new(embeddings, hidden_size))
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub struct ConvConfig {
|
||||
pub padding: usize,
|
||||
pub stride: usize,
|
||||
pub type Conv1d = candle_nn::Conv1d;
|
||||
pub type Conv1dConfig = candle_nn::Conv1dConfig;
|
||||
|
||||
// Applies weight norm for inference by recomputing the weight tensor. This
|
||||
// does not apply to training.
|
||||
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
|
||||
pub fn conv1d_weight_norm(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: Conv1dConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Conv1d> {
|
||||
let weight_g = vb.get((out_c, 1, 1), &format!("{p}.weight_g"))?;
|
||||
let weight_v = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight_v"))?;
|
||||
let norm_v = (&weight_v * &weight_v)?.sum(&[1, 2])?.sqrt()?;
|
||||
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
||||
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
||||
Ok(Conv1d::new(weight, Some(bias), config))
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Conv1D {
|
||||
weight: Tensor,
|
||||
bias: Option<Tensor>,
|
||||
config: ConvConfig,
|
||||
}
|
||||
|
||||
impl Conv1D {
|
||||
// Applies weight norm for inference by recomputing the weight tensor. This
|
||||
// does not apply to training.
|
||||
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
|
||||
pub fn load_weight_norm(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: ConvConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let weight_g = vb.get((out_c, 1, 1), &format!("{p}.weight_g"))?;
|
||||
let weight_v = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight_v"))?;
|
||||
let norm_v = (&weight_v * &weight_v)?.sum(&[1, 2])?.sqrt()?;
|
||||
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
||||
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: Some(bias),
|
||||
config,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn load(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: ConvConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let weight = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight"))?;
|
||||
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
||||
Ok(Self {
|
||||
weight,
|
||||
bias: Some(bias),
|
||||
config,
|
||||
})
|
||||
}
|
||||
pub fn conv1d(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: Conv1dConfig,
|
||||
p: &str,
|
||||
vb: &VarBuilder,
|
||||
) -> Result<Conv1d> {
|
||||
let weight = vb.get((out_c, in_c, kernel_size), &format!("{p}.weight"))?;
|
||||
let bias = vb.get(out_c, &format!("{p}.bias"))?;
|
||||
Ok(Conv1d::new(weight, Some(bias), config))
|
||||
}
|
||||
|
||||
pub type HiddenAct = candle_nn::Activation;
|
||||
|
Reference in New Issue
Block a user